Dräger X-am 2500
(MQG 0011)
Technical Manual
Content

1. **For your safety** .. 4
 1.1 General safety statements 4
 1.2 Definitions of alert icons 4

2. **Description** ... 5
 2.1 Product overview .. 5
 2.1.1 Front .. 5
 2.1.2 Rear side ... 5
 2.1.3 Display .. 5
 2.1.4 Special symbols .. 5
 2.2 Intended use ... 6
 2.3 Approvals .. 6
 2.3.1 Marking .. 6
 2.3.2 Permitted power packs 6
 2.3.3 Safety Instructions 7

3. **Use** ... 8
 3.1 Preparations for use 8
 3.1.1 Charging the batteries 8
 3.1.2 Replacing the batteries / rechargeable batteries ... 9
 3.1.3 Switching on the instrument 9
 3.1.4 Switching off the instrument 10
 3.2 Before entering the workplace 10
 3.3 Configuration .. 11
 3.3.1 Standard gas configuration 11
 3.3.2 Standard instrument configuration 12
 3.3.3 Configuring the device 12
 3.3.4 Export data memory and display graphically 13
 3.4 Running the bump test 13
 3.4.1 Manual implementation without documentation of the results in the instrument memory 13
 3.4.2 Menu implementation with the documentation of results in the instrument memory 14
 3.4.3 Automatic implementation with the Bump Test Station .. 14
 3.5 During operation .. 15
 3.6 Identifying alarms .. 15
 3.6.1 Concentration pre-alarm A1 15
 3.6.2 Concentration main alarm A2 16
 3.6.3 STEL / TWA exposure alarm 16
 3.6.4 Battery pre-alarm 16
 3.6.5 Battery main alarm 16
 3.6.6 Instrument alarm 16

4. **Menu functions** ... 17
 4.1 Activating the Info mode 17
 4.2 Opening Info-Off Mode 17
 4.3 Quick Menu .. 17
 4.3.1 Quick menu functions 17
 4.3.2 Opening the Quick Menu 17
 4.3.3 Quick menu "Delete peak values" 17
 4.4 Calibration Menu .. 17
 4.4.1 Calibration menu functions 17
 4.4.2 Open the Calibration Menu 17

5. **Calibrate instrument** 18
 5.1 Adjustment interval: 18
 5.2 Run fresh air calibration 18
 5.3 1-button calibration 19
 5.3.1 Calibrating the sensitivity for an individual measuring channel ... 19
 5.3.2 Sensitivity calibration for CatEx 20

6. Operation with pump .. 21

7. Replacing the sensors .. 21

8. Troubleshooting .. 22
 8.1 Warning messages .. 22
 8.2 Fault message .. 24

9. Maintenance ... 27
 9.1 Maintenance table .. 27
 9.2 Cleaning .. 27

10. Storage .. 27

11. Disposal .. 27
 11.1 WEEE .. 27
 11.2 Battery disposal ... 27
 11.3 Electrochemical sensors 27

12. Technical data ... 28
 12.1 X-am 2500 .. 28
 12.2 Sensor data ... 29

13. Order list ... 31

14. Declaration of conformity 32
1 For your safety

1.1 General safety statements

- Before using this product, carefully read the associated Instructions for Use. This document does not replace the Instructions for Use.

1.2 Definitions of alert icons

The following alert icons are used in this document to provide and highlight areas of the associated text that require a greater awareness by the user. A definition of the meaning of each icon is as follows:

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.</td>
</tr>
<tr>
<td></td>
<td>Indicates a potentially hazardous situation which, if not avoided, could result in physical injury, or damage to the product or environment. It may also be used to alert against unsafe practices.</td>
</tr>
<tr>
<td></td>
<td>Indicates additional information on how to use the product.</td>
</tr>
</tbody>
</table>
2 Description

2.1 Product overview

2.1.1 Front

Display for 4 measuring channels:
1 Measured gas display with unit
2 Measuring value display
3 Special symbols

otherwise:
4 Measured gas display
5 Measured value display with unit
6 Special symbols

The following only shows the instrument version with 4 measuring channels.

2.1.4 Special symbols

Fault message, see section 4.1 on page 17
Warning message, see section 4.1 on page 17
Display of peak values for all measured gases, see section 4.1 on page 17
The exposure evaluation display (TWA) for measured gases, e.g. H₂S and CO, see section 4.1 on page 17
The exposure evaluation display (STEL) for measured gases, e.g. H₂S und CO, see section 4.1 on page 17
The instrument is set to the bump test function, see section 3.4 on page 13
The instrument is set to the fresh air calibration function, see section 5.2 on page 18
The instrument is set to the single gas calibration function, see section 5.3.1 on page 19
Function for password input is active, see section 4.4 on page 17
Battery / rechargeable battery 100 % full
Battery / rechargeable battery 2/3 full
Battery / rechargeable battery 1/3 full
Battery / rechargeable battery empty
2.2 Intended use

Portable gas detection instrument for the continuous monitoring of the concentration of several gases in the ambient air within the working area and in explosion-hazard areas. Independent measurement of up to 4 gases, in accordance with the installed Dräger sensors.

Areas subject to explosion hazards, classified by zones

The instrument is intended for the use in areas that are at risk for explosions in Zone 0, Zone 1 or Zone 2 or in mines at risk due to black damp. It is intended for use within a temperature range of -20 °C to +50 °C, and for areas in which gases of explosion groups IIA, IIB or IIC and temperature class T3 or T4 (depending on the batteries and rechargeable battery) may be present. For zone 0, the temperature class is limited to T3. If used in mines, the instrument is only to be used in areas known to have a low risk of mechanical impact.

Areas subject to explosion hazards, classified by divisions

The instrument is intended for the use in areas that are at risk for explosions of Class I&II, Div. 1 or Div. 2. It is intended for use within a temperature range of -20 °C to +50 °C, and for areas in which gases or dusts of groups A, B, C, D or E, F, G, and temperature class T3 or T4 (depending on the batteries and rechargeable battery) may be present.

2.3 Approvals

The approvals are shown on the rating plate. The technical approvals are valid for the X-am 2500 gas detection instrument and the calibration cradle. The explosion-protection approvals are only valid for the X-am 2500 gas detection instrument; the calibration cradle must not be used in the Ex zone. The BVS 10 ATEX E 080 X technical suitability test is based on the calibration with the target gas.

2.3.3 Safety Instructions

WARNING

Do not replace or charge batteries in potentially explosive areas. Explosion hazard!

Charge the NiMH power pack T4 (type HBT 0000) or T4 HC (type HBT 0100) with the associated Dräger charger. Charge NiMH single cells for ABT 0100 battery holder in accordance with the manufacturer’s specifications. Ambient temperature during the charging process: 0 to +40 °C.

To reduce the danger of explosion, do not mix new batteries with old batteries and do not mix batteries made by different manufacturers.

Always disconnect the instrument from the power pack before carrying out any maintenance operations.

Substitution of components may impair intrinsic safety.

Only use power packs ABT 0100 (order no. 83 22 237), HBT 0000 (order no. 83 18 704) or HBT 0100 (order no. 83 22 244). See marking on power pack for approved batteries and related temperature classes.

Not tested in an oxygen-enriched atmosphere (>21 % O₂).

High off-scale readings may indicate an explosive concentration.

Note the following for CSA (Canadian Standards Association) applications:

For the CSA approval only the functions of the device component that is used to measure flammable gases are tested. The device is not approved by CSA for use in mining.

WARNING

Before daily use, test the sensitivity with a known concentration of the applicable gas corresponding to 25 to 50% of the maximum concentration. The accuracy must be within a range of 0 to +20% of the actual value. Perform a calibration to correct the accuracy if necessary.
3 Use

3.1 Preparations for use

- Before using the instrument for the first time, insert the batteries provided or a charged NiMH power pack T4 (type HBT 0000; order no. 83 18 704) / T4 HC (type HBT 0100; order no. 83 22 244), see section 3.1.2 on page 9.
- The instrument is now ready for operation.

3.1.1 Charging the batteries

WARNING

Explosion hazard!

Do not charge underground or in explosion hazard areas!

The chargers are not designed in accordance with the regulations for fire damp and explosion protection.

Charge the NiMH power pack T4 (type HBT 0000) or T4 HC (type HBT 0100) with the associated Dräger charger. Charge NiMH single cells for ABT 0100 battery holder in accordance with the manufacturer's specifications. Ambient temperature during the charging process: 0 to +40 °C.

NOTICE

Even if the instrument is not used, Dräger recommends storing the instrument in the charging cradle (chargingmodule X-am 1/2/5000, order no. 83 18 639).

- To maintain the lifetime of the batteries, charging is temperature controlled and only performed in a temperature range of 5 to 35 °C. When outside this temperature range, the charging automatically interrupted and automatically recommenced after the temperature range has been reached again.
- The charging time is typically 4 hours.
- A new NiMH power pack reaches its full capacity after three complete charging/discharging cycles.
- Never store the instrument for extended periods without being connected to a power source (maximum of 2 months) because the internal buffer battery will drain.

Charging with the multiple charging station

- A maximum of 20 instruments can be charged at the same time on the power pack (order no. 83 18 805) of the multiple charging station.
- When attaching the charging modules, disconnect the power pack from the mains supply!

CAUTION

Always connect or disconnect the charging modules individually and not in groups in order to prevent the charging station from becoming damaged. During transportation, the power pack and the charging modules should also always be handled individually and without inserted instruments.
Use

Charge using charger module and plug-in power pack or vehicle charging adapter

- When using the power pack (order no. 83 16 994), up to 5 instruments can be charged at the same time, with power pack (order no. 83 15 635) up to 2 instruments.
- The power pack contained in the rechargeable battery and charging set (order no. 83 18 785) is suitable for charging one instrument.
- When using the vehicle charging adapter (order no. 45 30 057) it is recommended that you supply every charging module separately.
- The charging process is carried out analogous to charging with the multiple charging station.

3.1.2 Replacing the batteries / rechargeable batteries

WARNING

Explosion hazard!

Do not throw used batteries into fire or try to open them by force.

Do not replace or charge batteries in a hazardous area.

Batteries / rechargeable batteries are part of the Ex approval.

Only the following types may be used:
- Alkaline batteries – T3 – (non rechargeable!)
- Panasonic LR6 Powerline
- Varta Type 4106 \(^1\) (power one) or
- Varta Type 4006 \(^1\) (industrial)
- Alkaline batteries – T4 – (non rechargeable!)
- Duracell Procell MN1500 \(^1\)
- NiMH rechargeable batteries – T3 – (rechargeable)
- GP 180AAHC \(^1\) (1800 mAh) max. 40 °C ambient temperature.

Charge the NiMH power pack T4 (type HBT 0000) or T4 HC (type HBT 0100) in accordance with the associated Dräger charger. Charge NiMH rechargeable batteries for battery holder ABT 0100 in accordance with the manufacturer's specifications. Ambient temperature during the charging process: 0 to +40 °C.

\(^1\) Not part of the measurement performance tests BVS10 ATEX E 080X and PFG 10 G 001X.

1. Switching off the instrument: \(\bigcirc\) key and \(\bigcirc\) key are held down simultaneously.
2. Loosen the screw (2.0 mm hexagon socket) on the power pack and remove the power pack.
- With battery holder (order no. 83 22 237): Replace alkaline batteries or NiMHy rechargeable batteries. Ensure correct polarity.
- With the T4 NiMH power pack (type HBT 0000) / T4 HC (type HBT 0100): Completely replace the power pack.
3. Insert the power pack into the instrument and tighten the screw, the instrument switches on automatically.

After replacing the T4 NiMH power pack (type HBT 0000)/ T4 HC (type HBT 0100), a full charge is recommended.

After the batteries have been replaced:

- The settings and data are stored when the battery is replaced. The sensors warm up again.

3.1.3 Switching on the instrument

1. **Hold down the [OK] button for approx. 3 seconds until the » 3 . 2 . 1 « countdown shown on the display has elapsed.**
 - All the display segments, including the visual, audible and vibration alarms, are activated for a short time.
 - The software version is displayed.
 - The instrument performs a self-test.
 - The sensor that is up next for calibration/adjustment is displayed with the remaining days until the next calibration/adjustment e. g. » Ex %LEL CAL 20 «.
 - The time until the bump test interval elapses is displayed in days, e. g. » bt 123 «.
 - All A1 and A2 alarm thresholds and » (TWA)1 and » (STEL)1 for all toxic gases (e. g. H₂S or CO) are displayed consecutively.
 - During the warm-up period of the sensors, the respective display of the measured value flashes and the special symbol » « (for warning) is displayed. No alarms are issued during the warm-up period of the sensors. See the Technical Handbook for details regarding accelerated warm-up.
2. Press the [OK] key to cancel the display of the activation sequence.

1) Not part of the measurement performance tests BVS10 ATEX E 080X and PFG 10 G 001X.

WARNING

Explosion hazard!

Do not throw used batteries into fire or try to open them by force.

Do not replace or charge batteries in a hazardous area.

Batteries / rechargeable batteries are part of the Ex approval.

Only the following types may be used:
- Alkaline batteries – T3 – (non rechargeable!)
- Panasonic LR6 Powerline
- Varta Type 4106 \(^1\) (power one) or
- Varta Type 4006 \(^1\) (industrial)
- Alkaline batteries – T4 – (non rechargeable!)
- Duracell Procell MN1500 \(^1\)
- NiMH rechargeable batteries – T3 – (rechargeable)
- GP 180AAHC \(^1\) (1800 mAh) max. 40 °C ambient temperature.

Charge the NiMH power pack T4 (type HBT 0000) or T4 HC (type HBT 0100) in accordance with the associated Dräger charger. Charge NiMH rechargeable batteries for battery holder ABT 0100 in accordance with the manufacturer's specifications. Ambient temperature during the charging process: 0 to +40 °C.

1) Only when activated in the instrument configuration. Delivery condition: not activated.
3.1.4 Switching off the instrument

Press and hold the [OK] key and [+] key simultaneously until the countdown » 3 . 2 . 1 « shown on the display has elapsed.

Before the instrument is switched off, the visual, audible and vibration alarms are activated for a short time.

3.2 Before entering the workplace

WARNING

Before any measurements relevant to safety are made, check the adjustment with a bump test, adjust if necessary and check all alarm elements. If national regulations apply, a bump test must be performed according to the national regulations. Faulty adjustment may result in incorrect measuring results, with possible serious consequences.

1. Switch on the instrument. The current measured values are shown in the display.
2. Observe any warning » « or fault messages » «.
 - The instrument can be operated normally. If the warning message does not disappear automatically during operation, the instrument must be serviced after the end of use.
 - The instrument is not ready to measure and requires maintenance.
3. Check that the gas inlet opening on the instrument is not covered.

WARNING

Fractions of catalytic poisons in the measuring gas (e.g. volatile silicone, sulphur, heavy metal compounds or halogenated hydrocarbon) can damage the CatEx sensor. If the CatEx sensor can no longer be calibrated to the target concentration, the sensor must be replaced.

In case of measurements in an oxygen-deficient atmosphere (<8 Vol.-% O₂) the CatEx sensor may show incorrect displays; in this case, a reliable measurement with a CatEx sensor is not possible.

In an oxygen enriched atmosphere (>21 vol. % O₂), the explosion protection cannot be guaranteed; remove instrument from the Ex area.
3.3 Configuration

3.3.1 Standard gas configuration

<table>
<thead>
<tr>
<th>DrägerSensor</th>
<th>Measuring range</th>
<th>Alarm A1 1)</th>
<th>Alarm A2 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CatEx 125 PR [%LEL]</td>
<td>0 to 100</td>
<td>20</td>
<td>yes</td>
</tr>
<tr>
<td>XXS O₂ [Vol.-%]</td>
<td>0 to 25</td>
<td>19 2</td>
<td>no</td>
</tr>
<tr>
<td>XXS CO [ppm]</td>
<td>0 to 2000</td>
<td>30</td>
<td>yes</td>
</tr>
<tr>
<td>XXS H₂S LC [ppm]</td>
<td>0 to 100</td>
<td>5</td>
<td>yes</td>
</tr>
<tr>
<td>XXS NO₂ [ppm]</td>
<td>0 to 50</td>
<td>5</td>
<td>yes</td>
</tr>
<tr>
<td>XXS SO₂ [ppm]</td>
<td>0 to 100</td>
<td>1</td>
<td>yes</td>
</tr>
</tbody>
</table>

1) Different settings can be selected to meet customer requirements on delivery. The current setting can be checked and changed with the Dräger CC Vision software.

A version of the CC-Vision software that can be used for Dräger X-am 2500 is available for download from the product page for the X-am 2500 at the following web address: www.draeger.com

2) With O₂, A1 is the lower alarm threshold: an alarm is triggered if the value is too low.
3.3.2 Standard instrument configuration

Dräger X-am® 2500

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bump test mode</td>
<td>Extended bump test</td>
</tr>
<tr>
<td>Fresh-gas adjustment</td>
<td>ON</td>
</tr>
<tr>
<td>Operating signal</td>
<td>ON</td>
</tr>
<tr>
<td>Switch off</td>
<td>allowed</td>
</tr>
<tr>
<td>LEL factor (CH₄)</td>
<td>4.4 (vol. %) (4.4 vol. % corresponds to 100 %LEL)</td>
</tr>
<tr>
<td>STEL (short-term average)</td>
<td>STEL function - disabled Average value duration = 15 minutes</td>
</tr>
<tr>
<td>TWA (shift average)</td>
<td>TWA function - disabled Average value duration = 8 hours</td>
</tr>
</tbody>
</table>

- Alarm A1: can be acknowledged, non-latching, pre-alarm, rising flank
- Alarm A1 at O₂ sensor: cannot be acknowledged, latching, like main alarm, falling flank
- Alarm A2: cannot be acknowledged, latching, main alarm, rising flank

1) X-am® is a registered trademark of Dräger.
2) Different settings can be selected to meet customer requirements on delivery. The current setting can be checked and changed with the Dräger CC Vision software.
3) A periodic short signal indicates the operating capacity of the instrument. If there is no operating signal, correct operation cannot be guaranteed.
4) STEL: average value of an exposure over a short period, generally 15 minutes.
5) Interpretation only if the sensor is designed for this.
6) TWA: shift averages are workplace limit values for generally eight hours per day of exposure for five days a week during a working life.
7) Latching and acknowledgement of alarms A1 and A2 can be configured with the Dräger CC Vision PC software.

Changing the configuration: see “Replacing the sensors” on page 21.

WARNING
After a basic initialisation has been carried out with the PC software Dräger CC Vision, individual alarm settings may have been changed.

3.3.3 Configuring the device

To individually configure a standard-configuration device, connect the device to a PC. The installed PC software Dräger CC Vision is used for configuration.

A version of Dräger CC-Vision suitable for the Dräger X-am 2500 can be downloaded on the product page for the X-am 2500 at the following web address: www.draeger.com

Device settings

The following changes can be made to the device parameters for a device:

<table>
<thead>
<tr>
<th>Designation</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Password</td>
<td>Numeric field (3-figure)</td>
</tr>
<tr>
<td>Operating signal LED</td>
<td>Yes/No</td>
</tr>
<tr>
<td>Operating signal horn</td>
<td>Yes/No</td>
</tr>
<tr>
<td>Switch-off mode</td>
<td>“Switch off permitted” or “Switch off prohibited” or “Switch off prohibited at A2”</td>
</tr>
<tr>
<td>Shift length (TWA) (in minutes)</td>
<td>60 - 14400 (setting for exposure alarm)</td>
</tr>
<tr>
<td>Short-term exposure limit (STEL) (in minutes)</td>
<td>0 - 15 (setting for exposure alarm)</td>
</tr>
<tr>
<td>User ID (12 characters)</td>
<td>Alphanumeric field</td>
</tr>
<tr>
<td>Switch database on or off</td>
<td>On/Off</td>
</tr>
<tr>
<td>Overwrite database</td>
<td>Yes/No</td>
</tr>
<tr>
<td>Database mode</td>
<td>Peak/Average</td>
</tr>
<tr>
<td>Database interval</td>
<td>1 s / 10 s / 30 s / 1 min / 2 min / 5 min / 10 min / 30 min</td>
</tr>
<tr>
<td>Date</td>
<td>(date on the PC)</td>
</tr>
<tr>
<td>Time</td>
<td>(time on the PC)</td>
</tr>
<tr>
<td>Warning after expiry of calibration interval</td>
<td>Yes/No</td>
</tr>
<tr>
<td>Error after expiry of calibration interval</td>
<td>Yes/No</td>
</tr>
<tr>
<td>Delay until error after expiry of calibration interval (days)</td>
<td>0 - 10</td>
</tr>
<tr>
<td>Automatic detection of Bump Test Station</td>
<td>Yes/No</td>
</tr>
</tbody>
</table>
Sensor settings
The following changes can be made to the sensor parameters for the sensors:

<table>
<thead>
<tr>
<th>Designation</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm threshold A1 (in measurement unit)</td>
<td>0 - A2</td>
</tr>
<tr>
<td>Alarm threshold A2 (in measurement unit)</td>
<td>A1 – Measuring range limit value</td>
</tr>
<tr>
<td>Type of evaluation</td>
<td>Inactive, TWA, STEL, TWA+STEL</td>
</tr>
<tr>
<td>Alarm threshold STEL (in measurement unit)</td>
<td>0 – Measuring range limit value</td>
</tr>
<tr>
<td>Alarm threshold TWA (in measurement unit)</td>
<td>0 – Measuring range limit value</td>
</tr>
<tr>
<td>Calibration interval (days)</td>
<td>0 - 180 (sensor-dependent)</td>
</tr>
<tr>
<td>Unit (sensor-dependent)</td>
<td>Vol%, %UEG, %LEL, %LIE, ppm, mbar, ppb, mg/m³</td>
</tr>
<tr>
<td>Gas name: “Ex” (CatEx sensor only)</td>
<td>Yes/No</td>
</tr>
</tbody>
</table>

1) Only evaluated if the sensor is provided for the purpose.

Testing the parameters
In order to ensure that the values have been correctly transferred to the gas measuring device:
1. Press the touch button Data from X-am 1/2/5x00
2. Check parameters.

3.3.4 Export data memory and display graphically
To read the database of the instrument and display it graphically, the instrument must be connected with a PC.

The installed Dräger GasVision PC software is used for exporting and displaying the database.
- Observe the documentation and online help of the software.

3.4 Running the bump test

3.4.1 Manual implementation without documentation of the results in the instrument memory

1. Prepare a test gas cylinder, the volume flow must be 0.5 l/min and the gas concentration must be higher than the alarm threshold concentration that is to be tested.
 Example test gas cylinder 68 11 130 = mixed gas with 50 ppm CO, 15 ppm H₂S, 2.5 vol. % CH₄, 18 vol. % O₂
2. Connect the test gas cylinder with the calibration cradle (order no. 83 18 752).
3. Vent the test gas into a fume cupboard or into the open air (with a hose connected to the second connector of the calibration cradle).
4. Switch on the instrument and insert it into the calibration cradle – press downwards until it engages.
5. Open the test gas cylinder valve to let test gas flow over the sensors.
 Recommendation: Wait until the instrument displays the test gas concentration with sufficient tolerance – Ex: ±20 % of the test gas concentration
 O₂: ±0.6 vol. %
 TÖX: ±20 % of the test gas concentration
 Wait until at least alarm threshold A1 or A2 has been exceeded, however.
 If the alarm thresholds are exceeded, the instrument displays the gas concentration in alternation with » A1 « or » A2 « depending on the test gas concentration.
6. Close the test gas cylinder valve and remove the instrument from the calibration cradle.
If the concentration has now fallen under the A1 alarm threshold:
- Acknowledge the alarm.
If the displays are outside of the above-mentioned ranges:
- Calibrating/adjusting the instrument, see section 5 on page 18.

1) Upon application of the Dräger mixed gas (order no. 68 11 130) the displays should be within this range.

CAUTION
Never inhale the test gas. Health hazard! Observe the hazard warnings of the relevant Safety Data Sheets.
3.4.2 Menu implementation with the documentation of results in the instrument memory

The setting to "Quick bump test" or "Extended bump test" is made using the PC software Dräger CC Vision.

In the "Quick bump test" a check is carried out as to whether or not the gas concentration has exceeded alarm threshold 1 (with oxygen, the test checks that alarm threshold 1 has not been reached).

In the case of the "Extended bump test", a check is made as to whether the gas concentration has reached the set bump test concentration within a tolerance window.

Setting on delivery: Extended bump test.

1. Prepare a test gas cylinder, the volume flow must be 0.5 l/min and the gas concentration must be higher than the alarm threshold concentration that is to be tested.
2. Connect the test gas cylinder with the calibration cradle (order no. 83 18 752).
3. Vent the test gas into a fume cupboard or into the open air (with a hose connected to the second connector of the calibration cradle).

4. Switch on the instrument and insert it into the calibration cradle – press downwards until it engages.
5. Open the Quick menu and select the bump test, page 17.
6. Press the key to start the bump test.
7. Open the test gas cylinder valve to let test gas flow over the sensor.
 - If gas concentration exceeds the alarm thresholds A 1 or A 2 the corresponding alarm will occur.

Ending the bump test:

After the set bump test concentration has been reached or a gas alarm has been triggered (with "Quick bump test"):
- The display containing the current gas concentration changes with the display » OK «.
- The bump test that was carried out is documented with the result and date in the instrument memory.

8. Close the test gas cylinder valve and remove the instrument from the calibration cradle.
 - If the concentration values have now fallen under the A1 alarm thresholds, the instrument returns to the measuring mode.
 - If the set bump test concentration is not reached within the set time, an error is issued.
 - The fault message » « appears and » « is displayed instead of the measured value on the faulty measuring channel.
 - In this case, repeat the bump test or calibrate the instrument, page 21.

The bump test can also be run automatically. The "Bump Test Station" is required for this function, see section 3.4.3 on page 14.

3.4.3 Automatic implementation with the Bump Test Station

Prerequisite:
The instrument first needs to be configured for the automatic bump test using the Dräger CC-Vision PC software.
- Activating the instrument for the automatic bump test.
- Composition of test gas (mixed gas) – standard on delivery: 50 ppm CO, 15 ppm H₂S, 2.5 vol. % CH₄, 18 vol. % O₂

CAUTION
Never inhale the test gas. Health hazard! Observe the hazard warnings of the relevant Safety Data Sheets.
• Define which measuring channels should participate in the automatic bump test. All measuring channels participate in the bump test by default.

1. Prepare the Bump Test Station according to the instructions.
2. Switch on the instrument and insert it into the receptacle of the Bump Test Station until it engages. The bump test will be started automatically. The special symbol » ✔ « (for bump test) flashes.

If a gas alarm (quick bump test) is initiated and the set bump test concentration (Accelerated bump test) is reached within the set time, the current gas concentration will be displayed alternately with » OK «.

3. Remove the instrument from the Bump Test Station.
 • If the concentration values have now fallen under the A1 alarm thresholds, the instrument returns to the measuring mode.
 • If there is no alarm during the bump test and the current measurements do not reach the set target concentration ("Accelerated bump test" only), an error is issued.
 - The fault message » ⌁ « appears and » ⌂ « is displayed instead of the measured value on the faulty measuring channel.
 - In this case, repeat the bump test or calibrate the instrument, page 21.

The bump test can also be run manually, see section 3.4.1 on page 13.

The Draeger CC Vision PC software can be used to enable the "Automatic calibration after incorrect bump test" option.

3.5 During operation
• During operation, the measured values for every measured gas are displayed.
• If a measuring range is exceeded or not reached, the following displays are shown instead of the measured value display:
 - » ⌂ « (measuring range exceeded)
 - » ⌂ « (measuring range not reached)
 - » ⌂ « (blocking alarm).
• Excess concentrations of flammable materials can lead to a lack of oxygen.
• For O2 concentrations under 8 vol.% an error is indicated with » ⌂ « at the ex-channel instead of the measuring value as long as the measuring value falls below the pre-warning threshold.
• In the event of an alarm, the corresponding displays, including the visual, audible and vibration alarms, are activated, see section 6 on page 21.

NOTICE
Special states in which there is no measuring operation (quick menu, calibration menu, warm-up of sensors, password input) are indicated by a visual signal (slow flashing of the alarm LED).

If the measuring range is exceeded significantly at the CatEx channel (very high concentration of flammable materials), a blocking alarm is triggered. This CatEx blocking alarm can be acknowledged manually by switching the instrument off and back on again in fresh air.

WARNING
In the event of an impact load when using a CatEx sensor in the Draeger X-am 2500 that causes the fresh air display to deviate from zero, the zero point and sensitivity must be adjusted.

After the measuring range of the TOX measuring channels has been exceeded temporarily (up to one hour), checking the measuring channels is not necessary.

3.6 Identifying alarms
An alarm is displayed visually, audibly and through vibration in a specific pattern.

3.6.1 Concentration pre-alarm A1
Intermittent alarm:
Display » A1 « and measured value alternating:
The pre-alarm A1 is not latching and stops when the concentration has dropped below the alarm threshold A1.
• In case of A1, a single tone is audible and the alarm LED flashes.

Acknowledging the pre-alarm:
• Press the key. Only the audible alarm and the vibration alarm are switched off.
3.6.2 Concentration main alarm A2

WARNING
Risk of fatal injury! Leave the area immediately. A main alarm is self-latching and cannot be acknowledged or cancelled.

Intermittent alarm: Display » A2 and measured value alternating:
- In case of A2, a double tone is audible and the alarm LED flashes twice.

After leaving the area, when the concentration has dropped below the alarm threshold:
- Press the OK key. The alarm messages are switched off.

If the measuring range is exceeded significantly on the CatEx channel (very high concentration of flammable materials), a blocking alarm is triggered. This CatEx blocking alarm can be acknowledged manually by switching the instrument off and back on again in fresh air.

3.6.3 STEL / TWA exposure alarm

WARNING
Leave the area immediately. After this alarm, the deployment of personnel is subject to the relevant national regulations.

Intermittent alarm: Display » A2 « and » ø « (STEL) or » ø « (TWA) and measured value alternating:
- The STEL and TWA alarm cannot be acknowledged or cancelled.
- Switch off the instrument. The values for the exposure evaluation are deleted after the instrument is switched on again.

3.6.4 Battery pre-alarm

Intermittent alarm: Flashing special symbol » ø « on the right side of the display:

Acknowledging the pre-alarm:
- Press the OK key. Only the audible alarm and the vibration alarm are switched off.
- The battery still lasts min. 20 minutes after the first battery pre-alarm.

3.6.5 Battery main alarm

Intermittent alarm: Flashing special symbol » ø « on the right side of the display:

The battery main alarm cannot be acknowledged or cancelled:
- The device automatically switches off after 10 seconds.
- Before the instrument is switched off, the visual, audible and vibration alarms are activated for a short time.

3.6.6 Instrument alarm

Intermittent alarm: Special symbol » ø « displayed on the right side of the display:
- The instrument is not ready for operation.
- For corrective measures, see “Replacing the sensors” on page 21 to page 24.
- Contact maintenance or Draeger Service to rectify the problem.
4 Menu functions

4.1 Activating the Info mode

- In measuring mode, press the key for approx. 3 seconds.
- If any warning or fault messages exist, the corresponding information or error codes will be displayed (see section 8 on page 22).
- Press the key successively for the next display.
- The peak values and the exposition values TWA\(^1\) and STEL\(^{1,2}\) are displayed.

\(^1\) Warning messages are displayed. Numerical codes of warning messages: see section 8.1 on page 22.
\(^2\) Fault messages are displayed. Numerical codes of fault messages: see section 8.2 on page 24.

4.2 Opening Info-Off Mode

- When the instrument is in a deactivated state, press the key. The name of the gas, measuring unit, and measuring range limit value are displayed for all channels.
- Pressing the key again exits the Info Off mode (or via timeout).

4.3 Quick Menu

4.3.1 Quick menu functions

- Bump test see section 3.4 on page 13
- Fresh air calibration, see section 5.2 on page 18
- Delete peak values, see section 4.3.3 on page 17

4.3.2 Opening the Quick Menu

On delivery, only the fresh air calibration is activated in the Quick Menu. The PC software Dräger CC Vision can be used to activate the bump test for the quick menu and/or the function for displaying and deleting peak values.

1. In measuring mode, press the key three times. If no functions have been activated in the quick menu, the instrument remains in measuring mode.
2. You can select the activated functions of the quick menu by pressing the key:
- Press the key to call the selected function.
- Press the key to cancel the active function and to switch to measuring mode.
- If no key is pressed for 60 seconds, the instrument returns automatically to measuring mode.

4.3.3 Quick menu “Delete peak values”

After the function has been selected, the current peak values are displayed; the peak values special symbol appears in the display at the same time.

1. The peak values can be deleted by pressing the key for 5 sec. and the adjacent display appears, for example.
2. Press the key to end the function.

4.4 Calibration Menu

4.4.1 Calibration menu functions

- Fresh air calibration, see section 5.2 on page 18
- 1-button calibration, see section 5.3 on page 19
- Single gas calibration, see section 5.3.1 on page 19

4.4.2 Open the Calibration Menu

- The calibration menu can only be accessed by entering a password. Password on delivery: » 001 «
- The default password on delivery can be changed using the PC software Dräger CC Vision.
1. In measuring mode, press the key for at least 4 seconds. The function for entering the password is selected. The special symbol »« (for the "enter password" function) is displayed.
 The display shows »000«, with the first digit flashing.
2. Use the key to set the flashing digit.
3. Press the key, the second digit starts flashing.
4. Use the key to set the flashing digit.
5. Press the key, the third digit starts flashing.
6. Use the key to set the flashing digit.
7. Press the key to confirm the password once it has been set completely.
8. The calibration menu functions can now be selected by pressing the key.
 - Press the key to call the selected function.
 - Press the key to cancel the active function.
 - If no key is pressed for 10 minutes, the instrument automatically returns to measuring mode.

5 Calibrate instrument

WARNING
Always calibrate the zero-point before span. Otherwise, the calibration will contain errors!

- Adjustment may not be possible due to instrument and channel errors.
- Allow the sensors to warm up before the calibration!
- Warming-up time: see instructions for use / data sheets for the Dräger sensors installed (product page for X-am 2500 at www.draeger.com).

5.1 Adjustment interval:

- Observe the relevant specifications in the Instructions for Use/data sheets of the Dräger Sensors installed.
- For critical applications, observe the recommendations in EN 60079-29-2 or EN 45544-4 and national regulations. We recommend that you adjust all the channels after 6 months.

CAUTION
Never inhale the test gas. Health hazard! Observe the hazard warnings of the relevant Safety Data Sheets.

- Improving the zero point accuracy – perform fresh air calibration, page 18.
- Set the sensitivity of all sensors to the value of the test gas – carry out the 1-button calibration, page 19.
- Set the sensitivity of a sensor to the value of the test gas – span calibration/adjustment, page 19.

5.2 Run fresh air calibration

To improve the zero-point accuracy, a fresh air calibration can be carried out.

- Calibrate the instrument to fresh air, free of measured gases or other interfering gases.
- Sensors which have not warmed up or which are faulty prevent a calibration.
 - In the case of sensors which are in the warm-up phase, the message »159« is displayed with the special symbol »« (for warning message).
 - In the case of a sensor or instrument error, the message »109« is displayed with the special symbol »« (for a fault message).
 - The message is cleared after 5 seconds and the function is available again in the menu.
- During the fresh air calibration the zero point of all sensors (with the exception of the DrägerSensor XXS O2) are set to 0.
- In the case of the DrägerSensor XXS O2, the display is set to 20.9 vol. %.

1. Switch on instrument.
2. Depending on instrument configuration:
 - Open the Quick menu and select the fresh air calibration function, page 17.
 - Open the Calibration menu and select the fresh air calibration function, page 17.
3. The current gas concentration values flash.
4. When the measured values have stabilized:
 - Press the key to carry out the fresh air calibration.
 - The display containing the current gas concentration changes with the display »OK«.
 - Press the key to confirm the calibration or wait for approx. 5 seconds.

1 EN60079-29-2 – Guidelines for selection, installation, use and maintenance of instruments for the detection and measurement of flammable gases and oxygen.
2 EN 45544-4 – Electrical instruments for the direct detection and direct concentration measurement of toxic gases and vapours – Part 4: Guide for selection, installation, use and maintenance.
If a fault has occurred during the fresh air calibration:

- The fault message » « appears and » « is displayed for the respective sensor instead of the measured value.
- In this case, repeat the fresh air calibration.
- Replace the sensor if necessary, page 21.

5.3 1-button calibration

NOTICE
If no sensors have been approved by the Dräger CC-Vision PC program for the 1 button calibration, the 1-button calibration will not be available.

- All sensors approved by the Dräger CC-Vision PC program are included in the 1-button calibration.
- In the case of the 1-button calibration, the sensitivity of all sensors is set to the value of the test gas. When using test gas cylinder 68 11 130 = mixed gas with 50 ppm CO, 15 ppm H2S, 2.5 vol. % CH4, 18 vol. % O2.
- If a mixed gas with another composition is used, the specified concentration values in the instrument must be changed to the target values of the mixed gas used using the PC software "Dräger CC-Vision".

1. Connect the test gas cylinder with the calibration cradle.
2. Vent the test gas into a fume cupboard or into the open air (with a hose connected to the second connector of the calibration cradle).
3. Switch on the instrument and insert it into the calibration cradle until it engages.
4. Call the calibration menu, enter the password and select the 1-button calibration function, page 17.
5. Press the key to start the 1-button calibration.
6. Open the test gas cylinder valve to let test gas flow over the sensor.

When the calibration is completed and the displayed measured values have stabilised:

- The display containing the current gas concentration changes with the display » OK «.
8. Press the key or wait for 5 seconds to quit the calibration.
9. The instrument changes to the measuring mode.

If a fault occurs during the 1-button calibration:

- The fault message » « appears and » « is displayed for the respective sensor instead of the measured value.
- In this case, repeat the 1-button calibration or carry out a single gas calibration, see section 5.3.1 on page 19.
- Replace the sensor if necessary, page 21.

5.3.1 Calibrating the sensitivity for an individual measuring channel

- The span calibration can be carried out specifically for individual sensors.
Calibrate instrument

- In the case of the span calibration, the sensitivity of the selected sensor is set to the value of the test gas used.
- Use a standard test gas. Allowed test gas concentration:
 - Ex: 40 to 100 %LEL
 - O₂: 10 to 25 vol. %
 - CO: 20 to 999 ppm
 - H₂S: 5 to 99 ppm
 Test gas concentration of other gases: see Instructions for Use for the respective DrägerSensors.

1. Connect the test gas cylinder with the calibration cradle.
2. Vent the test gas into a fume cupboard or into the open air (with a hose connected to the second connector of the calibration cradle).

! CAUTION
Never inhale the test gas. Health hazard! Observe the hazard warnings of the relevant Safety Data Sheets.

3. Switch on the instrument and insert it into the calibration cradle.
4. Press the [+] key and keep it pressed for 5 seconds to open the calibration menu, enter the password and select the single gas calibration function, page 17.
5. Press the key to start the channel selection.
- The display flashes the gas of the first measuring channel, e.g. » Ex %LEL «.
6. Press the key to start the calibration function of this measuring channel, or use the key to select another measuring channel (O₂ - vol. %, H₂S - ppm or CO - ppm).

5.3.2 Sensitivity calibration for CatEx

Display on channel selection:
1. Press the key to start the calibration for the heat tinting or press the (-)-key to select the next sensor.

5. Press the key to confirm the calibration gas concentration or use the [+] key to change the calibration gas concentration and complete the process by pressing the key.

The measurement value flashes.
6. Open the test gas cylinder valve to let test gas flow over the sensor. The displayed, flashing measurement value changes to the value according to the supplied test gas.
7. Press the (-)-key to select the next sensor.

If the displayed measurement value is stable:
2. Press the key to perform the calibration.

The display containing the current gas concentration changes with the display » OK «.
3. Press the key or wait for approx. 5 seconds to end the calibration of this measuring channel. The next measuring channel is offered for calibration.
4. Close the test gas cylinder valve and remove the device from the calibration cradle.

If a fault occurred during the span calibration.
- The fault message » « appears and » « is displayed for the sensor instead of the measured value.
- In this case, repeat the calibration.
- If necessary, replace the sensor, page 21.
Notice for the adjustment of the ex-channel to nonane as a measuring gas:

- During the calibration of the ex-channel, propane can be used as a substitute calibration gas.
- When using propane to adjust the ex-channel to nonane, the display must be set to twice the used test gas concentration.

Notice for the use in subsurface mining:

- For the calibration of the ex-channel to the measuring gas methane, the display of the instrument must be set to a value of 5% (relative) higher than the used test gas concentration.

6 Operation with pump

With Dräger Pump X-am 1/2/5000

Accessories:
Dräger Pump X-am 1/2/5000, sampling hose and probes, see section 13 on page 31.

Commissioning and performing the measurement:

- Refer to the Instructions for Use of the Dräger Pump X-am 1/2/5000.

With manual pump adapter and rubber ball pump

Accessories:
For manual pump adapter, rubber ball pump, sampling hose and probes, see section 13 on page 31.

Commissioning and performing the measurement:

- Refer to the Instructions for Use of the accessories used.

Observe the following during measuring mode with pump

- Wait for the flushing time to elapse:
 Before every measurement, flush the Dräger sampling hose or the Dräger probes with the air sample to be measured.

- A flushing phase is necessary to eliminate or minimise all effects associated with the use of a sampling hose or a probe, e.g. memory effects, dead volume.

- The duration of the flushing phase depends on factors such as type and concentration of the gas or vapour to be measured, material, length, diameter, and age of the sampling hose or probe. Generally, when using a sampling hose (new, dry, clean), a typical flushing time of approx. 3 seconds is required for each metre. This flushing time applies in addition to the sensor response time (see the Instructions for Use for the gas detection instrument used).

 Example:
 In the case of a sampling hose with a length of 10 m, the flushing time is approx. 30 seconds and the sensor response time is in addition approx. 60 seconds. Therefore, the total time before reading the gas measuring instrument is approx. 90 seconds.
 The flow-rate alarm is delayed by 10 to 30 seconds depending on the length of the hose.

7 Replacing the sensors

- To replace the sensors of the instrument, connect the instrument with a PC.
- Replace the sensors using the PC program Dräger CC Vision.

Next:

- Conduct the fresh air calibration page 18.
- Calibrating sensitivity:
 - either perform 1-button calibration, page 19
 - or run sensitivity calibration, see page 19.
8 Troubleshooting

<table>
<thead>
<tr>
<th>Fault</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not possible to switch on the instrument</td>
<td>Discharged power pack</td>
<td>Charge the power pack, page 8.</td>
</tr>
<tr>
<td></td>
<td>Discharged alkaline batteries</td>
<td>Insert new alkaline batteries, page 21.</td>
</tr>
<tr>
<td>Not possible to switch off the instrument</td>
<td>The instrument is not set to measuring mode</td>
<td>Select measuring mode.</td>
</tr>
<tr>
<td></td>
<td>The instrument is configured to “Disable prohibited”</td>
<td>Configure the instrument to “Disable allowed” with Dräger CC Vision.</td>
</tr>
<tr>
<td></td>
<td>Electronics or sensors defective</td>
<td>Must be repaired by Service.</td>
</tr>
</tbody>
</table>

List of the numerical codes of the warning and fault messages in the info mode, see page 17.

8.1 Warning messages

<table>
<thead>
<tr>
<th>Special symbol » « and displayed numerical code</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>152</td>
<td>Customer’s service life counter about to elapse</td>
<td>Reset the service life counter using Dräger CC Vision.</td>
</tr>
<tr>
<td>153</td>
<td>Database 90 % full</td>
<td>Read the database soon and clear memory afterwards.</td>
</tr>
<tr>
<td>154</td>
<td>Database full</td>
<td>Read the database and clear memory.</td>
</tr>
<tr>
<td>155</td>
<td>Interval for bump test elapsed</td>
<td>Conduct the bump test page 21.</td>
</tr>
<tr>
<td>159</td>
<td>Calibration not possible. The menu function cannot be carried out because of a message which is preventing the function (e.g. sensors in warm-up phase).</td>
<td>Determine the message code via the info menu and switch it off, if necessary.</td>
</tr>
<tr>
<td>251</td>
<td>DrägerSensor CatEx 125 PR warming up</td>
<td>Wait until warm-up time is complete.</td>
</tr>
<tr>
<td>252</td>
<td>DrägerSensor CatEx 125 PR warming up</td>
<td>Wait until warm-up time is complete.</td>
</tr>
<tr>
<td>253</td>
<td>Ex concentration has drifted into the negative range</td>
<td>Conduct the fresh air calibration page 18.</td>
</tr>
<tr>
<td>254</td>
<td>The temperature is too high</td>
<td>Operate the instrument within the allowed temperature range.</td>
</tr>
<tr>
<td>255</td>
<td>The temperature is too low</td>
<td>Operate the instrument within the allowed temperature range.</td>
</tr>
<tr>
<td>256</td>
<td>Calibration interval for DrägerSensor CatEx 125 PR has expired</td>
<td>Perform sensitivity calibration for DrägerSensor CatEx 125 PR, page 19.</td>
</tr>
<tr>
<td>257</td>
<td>Alarm threshold A2 is set to greater than 60 %LEL</td>
<td>Set alarm threshold to less than 60 %LEL.</td>
</tr>
<tr>
<td>271</td>
<td>Heat conductance calibration interval for DrägerSensor CatEx 125 PR has expired</td>
<td>Perform sensitivity calibration for DrägerSensor CatEx 125 PR, page 19.</td>
</tr>
<tr>
<td>272</td>
<td>Sensor is switched off due to excess gas</td>
<td>Restart the device</td>
</tr>
<tr>
<td>351</td>
<td>DrägerSensor XXS EC1 is warming up</td>
<td>Wait until warm-up time is complete.</td>
</tr>
<tr>
<td>352</td>
<td>DrägerSensor XXS EC1 is warming up</td>
<td>Wait until warm-up time is complete.</td>
</tr>
<tr>
<td>353</td>
<td>EC1 concentration has drifted into the negative range</td>
<td>Conduct the fresh air calibration page 18.</td>
</tr>
<tr>
<td>354</td>
<td>The temperature is too high</td>
<td>Operate the instrument within the allowed temperature range.</td>
</tr>
<tr>
<td>Cause</td>
<td>Remedy</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>The temperature is too low</td>
<td>Operate the instrument within the allowed temperature range.</td>
<td></td>
</tr>
<tr>
<td>The calibration interval for DrägerSensor XXS EC1 has elapsed</td>
<td>Run sensitivity calibration for DrägerSensor XXS EC 1, page 19.</td>
<td></td>
</tr>
<tr>
<td>Alarm threshold A2 is set to greater than 60 %LEL</td>
<td>Set alarm threshold to less than 60 %LEL.</td>
<td></td>
</tr>
<tr>
<td>DrägerSensor XXS EC2 in the warm-up phase</td>
<td>Wait until warm-up time is complete.</td>
<td></td>
</tr>
<tr>
<td>EC2 concentration has drifted into the negative range</td>
<td>Conduct the fresh air calibration page 18.</td>
<td></td>
</tr>
<tr>
<td>The temperature is too high</td>
<td>Operate the instrument within the allowed temperature range.</td>
<td></td>
</tr>
<tr>
<td>The temperature is too low</td>
<td>Operate the instrument within the allowed temperature range.</td>
<td></td>
</tr>
<tr>
<td>The calibration interval for DrägerSensor XXS EC2 has elapsed</td>
<td>Run sensitivity calibration for DrägerSensor XXS EC 3, page 19.</td>
<td></td>
</tr>
<tr>
<td>Alarm threshold A2 is set to greater than 60 %LEL</td>
<td>Set alarm threshold to less than 60 %LEL.</td>
<td></td>
</tr>
<tr>
<td>DrägerSensor XXS EC3 in the warm-up phase</td>
<td>Wait until warm-up time is complete.</td>
<td></td>
</tr>
<tr>
<td>EC3 concentration has drifted into the negative range</td>
<td>Conduct the fresh air calibration page 18.</td>
<td></td>
</tr>
<tr>
<td>The temperature is too high</td>
<td>Operate the instrument within the allowed temperature range.</td>
<td></td>
</tr>
<tr>
<td>The temperature is too low</td>
<td>Operate the instrument within the allowed temperature range.</td>
<td></td>
</tr>
<tr>
<td>The calibration interval for DrägerSensor XXS EC3 has elapsed</td>
<td>Run sensitivity calibration for DrägerSensor XXS EC 3, page 19.</td>
<td></td>
</tr>
<tr>
<td>Alarm threshold A2 is set to greater than 60 %LEL</td>
<td>Set alarm threshold to less than 60 %LEL.</td>
<td></td>
</tr>
<tr>
<td>Calibration interval for the compensation channel has elapsed</td>
<td>Adjust the sensitivity of the compensation channel.</td>
<td></td>
</tr>
<tr>
<td>Calibration required because of overgassing.</td>
<td>Adjust the sensitivity of the compensation channel.</td>
<td></td>
</tr>
<tr>
<td>DrägerSensor XXS EC 4 in the warm-up phase</td>
<td>Wait until warm-up time is complete.</td>
<td></td>
</tr>
<tr>
<td>EC 4 concentration has drifted into the negative range</td>
<td>Conduct the fresh air calibration page 18.</td>
<td></td>
</tr>
<tr>
<td>The temperature is too high</td>
<td>Operate the instrument within the allowed temperature range.</td>
<td></td>
</tr>
<tr>
<td>The temperature is too low</td>
<td>Operate the instrument within the allowed temperature range.</td>
<td></td>
</tr>
<tr>
<td>The calibration interval for DrägerSensor XXS EC 4 has elapsed</td>
<td>Run sensitivity calibration for DrägerSensor XXS EC 4, page 19.</td>
<td></td>
</tr>
<tr>
<td>Alarm threshold A2 is set to greater than 60 %LEL</td>
<td>Set alarm threshold to less than 60 %LEL.</td>
<td></td>
</tr>
</tbody>
</table>
8.2 Fault message

<table>
<thead>
<tr>
<th>Special symbol</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>« and</td>
<td>The customer's service life counter has</td>
<td>Reset the service life counter using Dräger CC Vision.</td>
</tr>
<tr>
<td>displayed numerical code:</td>
<td>elapsed</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>The instrument is defective</td>
<td>The instrument must be repaired by Service.</td>
</tr>
<tr>
<td>103</td>
<td>Check sum error program code</td>
<td>The instrument must be repaired by Service.</td>
</tr>
<tr>
<td>104</td>
<td>Bump test interval elapsed</td>
<td>Run the bump test page 14.</td>
</tr>
<tr>
<td>105</td>
<td>The calibration interval has elapsed</td>
<td>Run sensitivity calibration, see page 19 and/or page 19.</td>
</tr>
<tr>
<td>106</td>
<td>Bump test error (at least 1 channel has a</td>
<td>Run bump test, page 14 or run sensitivity calibration, page 19 and/or page 19.</td>
</tr>
<tr>
<td></td>
<td>bump test error)</td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>The menu function cannot be carried out</td>
<td>Determine the error code via the info menu and switch it off, if necessary.</td>
</tr>
<tr>
<td></td>
<td>because of an error</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>Faulty alarm element test: Alarm light</td>
<td>Repeat alarm element test using X-dock.</td>
</tr>
<tr>
<td>112</td>
<td>Faulty alarm element test: Alarm horn</td>
<td>Repeat alarm element test using X-dock.</td>
</tr>
<tr>
<td>113</td>
<td>Faulty alarm element test: Vibration motor</td>
<td>Repeat alarm element test using X-dock.</td>
</tr>
<tr>
<td>114</td>
<td>Defective parameter check</td>
<td>Correct parameters and repeat test using X-dock.</td>
</tr>
<tr>
<td>115</td>
<td>Instrument deactivated by X-dock</td>
<td>Instrument activated using X-dock.</td>
</tr>
<tr>
<td>116</td>
<td>Faulty software update</td>
<td>The instrument must be repaired by Service.</td>
</tr>
<tr>
<td>117</td>
<td>User parameters not feasible</td>
<td>Check configuration of user parameters and adjust</td>
</tr>
<tr>
<td>201</td>
<td>No valid zero point calibration of the</td>
<td>Conduct the fresh air calibration page 18.</td>
</tr>
<tr>
<td></td>
<td>DrägerSensor CatEx 125 PR</td>
<td></td>
</tr>
<tr>
<td>202</td>
<td>No valid sensitivity calibration of the</td>
<td>Run sensitivity calibration, see page 19 and/or page 19.</td>
</tr>
<tr>
<td></td>
<td>DrägerSensor CatEx 125 PR</td>
<td></td>
</tr>
<tr>
<td>203</td>
<td>Measurement from DrägerSensor CatEx 125 PR</td>
<td>Conduct the fresh air calibration page 18.</td>
</tr>
<tr>
<td></td>
<td>is in negative range</td>
<td></td>
</tr>
<tr>
<td>204</td>
<td>DrägerSensor CatEx 125 PR not plugged in</td>
<td>Check DrägerSensor CatEx 125 PR, page 21.</td>
</tr>
<tr>
<td></td>
<td>or faulty</td>
<td></td>
</tr>
<tr>
<td>205</td>
<td>Error during bump test of DrägerSensor</td>
<td>Repeat bump test, where necessary, calibrate or replace the DrägerSensor CatEx 125 PR, page 21.</td>
</tr>
<tr>
<td></td>
<td>CatEx 125 PR</td>
<td></td>
</tr>
<tr>
<td>207</td>
<td>Faulty rise time test</td>
<td>Repeat rise test using X-dock.</td>
</tr>
<tr>
<td>208</td>
<td>User parameters not feasible</td>
<td>Check configuration of user parameters and adjust</td>
</tr>
<tr>
<td>218</td>
<td>Blocking alarm not plausible.</td>
<td>Calibrate the sensor.</td>
</tr>
<tr>
<td>221</td>
<td>Too little oxygen to operate the DrägerSensor CatEx 125 PR</td>
<td>Operate sensor in an environment with at least 8 vol. % O₂.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>222</td>
<td>No valid zero point calibration of the</td>
<td>Conduct the fresh air calibration page 18.</td>
</tr>
<tr>
<td></td>
<td>DrägerSensor CatEx 125 PR for heat</td>
<td></td>
</tr>
<tr>
<td></td>
<td>conduction</td>
<td></td>
</tr>
<tr>
<td>223</td>
<td>No valid sensitivity calibration of the</td>
<td>Run heat conduction sensitivity calibration, see page 19 and/or page 19.</td>
</tr>
<tr>
<td></td>
<td>DrägerSensor CatEx 125 PR for heat</td>
<td></td>
</tr>
<tr>
<td></td>
<td>conduction</td>
<td></td>
</tr>
<tr>
<td>224</td>
<td>Instrument incorrectly configured by Dräger</td>
<td>Change sensor for applicable channel with Dräger CC-Vision.</td>
</tr>
<tr>
<td></td>
<td>CC-Vision</td>
<td></td>
</tr>
<tr>
<td>301</td>
<td>No valid zero point calibration of the</td>
<td>Conduct the fresh air calibration page 18.</td>
</tr>
<tr>
<td></td>
<td>DrägerSensor XXS EC1</td>
<td></td>
</tr>
<tr>
<td>302</td>
<td>No valid sensitivity calibration of the</td>
<td>Run sensitivity calibration, see page 19 and/or fresh air calibration, page 18.</td>
</tr>
<tr>
<td></td>
<td>DrägerSensor XXS EC1</td>
<td></td>
</tr>
<tr>
<td>303</td>
<td>The measured value of DrägerSensor XXS EC 1</td>
<td>Conduct the fresh air calibration page 18.</td>
</tr>
<tr>
<td></td>
<td>is in the negative range</td>
<td></td>
</tr>
<tr>
<td>304</td>
<td>DrägerSensor XXS EC1 is not inserted or</td>
<td>Check Dräger Sensor XXS EC1, page 21.</td>
</tr>
<tr>
<td>Cause</td>
<td>Remedy</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Error in bump test of Dräger Sensor XXS EC1</td>
<td>Repeat bump test, calibrate or replace Dräger Sensor XXS EC1, if necessary page 21.</td>
<td></td>
</tr>
<tr>
<td>Faulty filter test</td>
<td>Repeat filter test using X-dock.</td>
<td></td>
</tr>
<tr>
<td>Faulty rise time test</td>
<td>Repeat rise time test using X-dock.</td>
<td></td>
</tr>
<tr>
<td>User parameters not feasible</td>
<td>Check configuration of user parameters and adjust</td>
<td></td>
</tr>
<tr>
<td>Instrument incorrectly configured by Dräger CC-Vision.</td>
<td>Change sensor for applicable channel with Dräger CC-Vision.</td>
<td></td>
</tr>
<tr>
<td>Error during warm-up acceleration Dräger Sensor XXS EC1</td>
<td>Disconnect and reconnect power pack or replace the sensor. Sensor must not be loaded with gas within the first 5 minutes.</td>
<td></td>
</tr>
<tr>
<td>No valid zero point calibration of the Dräger Sensor XXS EC2</td>
<td>Conduct the fresh air calibration page 18.</td>
<td></td>
</tr>
<tr>
<td>The measured value of Dräger Sensor XXS EC2 is in the negative range</td>
<td>Conduct the fresh air calibration page 18.</td>
<td></td>
</tr>
<tr>
<td>Dräger Sensor XXS EC2 is not inserted or faulty</td>
<td>Check Dräger Sensor XXS EC2, page 21.</td>
<td></td>
</tr>
<tr>
<td>Error in bump test of Dräger Sensor XXS EC2</td>
<td>Repeat function test, calibrate or replace Dräger Sensor XXS EC2, if necessary page 21.</td>
<td></td>
</tr>
<tr>
<td>Faulty filter test</td>
<td>Repeat filter test using X-dock.</td>
<td></td>
</tr>
<tr>
<td>Faulty rise time test</td>
<td>Repeat rise time test using X-dock.</td>
<td></td>
</tr>
<tr>
<td>User parameters not feasible</td>
<td>Check configuration of user parameters and adjust</td>
<td></td>
</tr>
<tr>
<td>Instrument incorrectly configured by Dräger CC-Vision.</td>
<td>Change sensor for applicable channel with Dräger CC-Vision.</td>
<td></td>
</tr>
<tr>
<td>Error during warm-up acceleration Dräger Sensor XXS EC2</td>
<td>Disconnect and reconnect power pack or replace the sensor. Sensor must not be loaded with gas within the first 5 minutes.</td>
<td></td>
</tr>
<tr>
<td>No valid zero point calibration of the Dräger Sensor XXS EC3</td>
<td>Conduct the fresh air calibration page 18.</td>
<td></td>
</tr>
<tr>
<td>The measured value of Dräger Sensor XXS EC3 is in the negative range</td>
<td>Conduct the fresh air calibration page 18.</td>
<td></td>
</tr>
<tr>
<td>Dräger Sensor XXS EC3 is not inserted or faulty</td>
<td>Check Dräger Sensor XXS EC3, page 21.</td>
<td></td>
</tr>
<tr>
<td>Error in bump test of Dräger Sensor XXS EC3</td>
<td>Repeat bump test, calibrate or replace Dräger Sensor XXS EC3, if necessary page 21.</td>
<td></td>
</tr>
<tr>
<td>Faulty filter test</td>
<td>Repeat filter test using X-dock.</td>
<td></td>
</tr>
<tr>
<td>Faulty rise time test</td>
<td>Repeat rise time test using X-dock.</td>
<td></td>
</tr>
<tr>
<td>User parameters not feasible</td>
<td>Check configuration of user parameters and adjust</td>
<td></td>
</tr>
<tr>
<td>Instrument incorrectly configured by Dräger CC-Vision.</td>
<td>Change sensor for applicable channel with Dräger CC-Vision.</td>
<td></td>
</tr>
<tr>
<td>No valid sensitivity calibration for the compensation channel</td>
<td>Carry out span calibration for compensation electrode.</td>
<td></td>
</tr>
<tr>
<td>Error during warm-up acceleration Dräger Sensor XXS EC3</td>
<td>Disconnect and reconnect power pack or replace the sensor. Sensor must not be loaded with gas within the first 5 minutes.</td>
<td></td>
</tr>
<tr>
<td>No valid zero point calibration of the Dräger Sensor XXS EC4</td>
<td>Conduct the fresh air calibration page 18.</td>
<td></td>
</tr>
<tr>
<td>Special symbol » & « and displayed numerical code</td>
<td>Cause</td>
<td>Remedy</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>603</td>
<td>The measured value of Dräger Sensor XXS EC4 is in the negative range</td>
<td>Conduct the fresh air calibration page 18.</td>
</tr>
<tr>
<td>604</td>
<td>Dräger Sensor XXS EC4 is not inserted or faulty</td>
<td>Check Dräger Sensor XXS EC4, page 21.</td>
</tr>
<tr>
<td>605</td>
<td>Error in bump test of Dräger Sensor XXS EC4</td>
<td>Repeat bump test, calibrate or replace Dräger Sensor XXS EC4, if necessary page 21.</td>
</tr>
<tr>
<td>606</td>
<td>Faulty filter test</td>
<td>Repeat filter test using X-dock.</td>
</tr>
<tr>
<td>607</td>
<td>Faulty rise time test</td>
<td>Repeat rise time test using X-dock.</td>
</tr>
<tr>
<td>608</td>
<td>User parameters not feasible</td>
<td>Check configuration of user parameters and adjust</td>
</tr>
<tr>
<td>624</td>
<td>Instrument incorrectly configured by Dräger CC-Vision.</td>
<td>Change sensor for applicable channel with Dräger CC-Vision.</td>
</tr>
<tr>
<td>626</td>
<td>Error during warm-up acceleration Dräger Sensor XXS EC4</td>
<td>Disconnect and reconnect power pack or replace the sensor. Sensor must not be loaded with gas within the first 5 minutes.</td>
</tr>
</tbody>
</table>
9 Maintenance

9.1 Maintenance table

The instrument should be inspected and maintained by suitably qualified persons annually. Consult:
- EN 60079-29-2 – Guide for the selection, installation, use and maintenance of apparatus for the detection and measurement of combustible gases or oxygen
- EN 45544-4 – Electrical apparatus used for the direct detection and direct concentration measurement of toxic gases and vapours - Part 4: Guide for selection, installation, use and maintenance
- national regulations

Recommended calibration interval for measuring channels Ex, O₂, H₂S and CO: 6 months.

NOTICE
Calibration intervals of other gases: see Instructions for Use of the respective DrägerSensors.

- Depending on instrument configuration:
 - Replace the alkaline batteries or charge the battery – see section 3.1.2 on page 9 – after each use, at the latest after the battery alarm has been triggered or after 2 weeks.
 - Calibrating the instrument – see section 5 on page 18.
 - At regular intervals, according to the sensors used and the operating conditions. For sensor-specific calibration data, refer to the Instructions for Use/data sheets of the sensors used.
 - Before you carry out safety-related relevant measurements, the zero point and sensitivity of the instruments should be tested in accordance with national regulations.
- Inspection by suitably qualified persons – every year.
 - The inspection intervals must be established in each individual case and shortened if necessary, depending on technical safety considerations, engineering conditions, and the technical requirements of the equipment.
 - We recommend that a service agreement be concluded with Dräger and that repairs also be carried out by them.
- Replace the sensors, page 21 – if necessary, when it is not possible to calibrate the sensors any more.

9.2 Cleaning

CAUTION
Abrasive cleaning implements (brushes etc.), cleaning agents and cleaning solvents can destroy the dust and water filters.

- The instrument does not need any special care.
- Dirt and deposits can be removed from the instrument by washing it with cold water. A sponge can be used for wiping if necessary.
- Carefully dry the instrument with a cloth.

1 Instructions for use/data sheets for the Dräger sensors can be downloaded from the product page for the X-am 2500 on the following website: www.draeger.com. See also the enclosed instructions for use and data sheets for the sensors used.

10 Storage

- Dräger recommends storing the instrument in the charger module (order no. 83 18 639).
- Dräger recommends checking the charge of the power supply at least every three weeks if the instrument is not stored in the charger module.

11 Disposal

Dispose of product in accordance to applicable regulations.

11.1 WEEE

In accordance with EU Directive 2002/96/EC this product must not be disposed of as household waste. This is indicated by the adjacent icon.

You can return this product to Dräger free of charge. For information please contact the national marketing organisations and Dräger.

11.2 Battery disposal

In accordance with EU Directive 2006/66/EC, batteries and rechargeable batteries must not be disposed of as household waste but must be taken to battery collection centres. This is indicated by the adjacent icon. Collect batteries and rechargeable batteries as specified by the applicable regulations and dispose of at battery collection centres.

11.3 Electrochemical sensors

WARNING
Acid burn risk!
Do not throw into fire or open with force.

As with batteries, dispose of as special waste in line with local waste disposal regulations. Further information can be obtained from the relevant local authority and from appropriate waste disposal companies.

The DrägerSensor CatEx 125 PR should be disposed of as electronics waste.
12 Technical data

12.1 X-am 2500

| Ambient conditions: |
|--------------------|---
| during operation and storage | –20 to +50 °C for NiMH power pack type: HBT 0000 and HBT 0100, and for alkaline single cell type: Duracell Procell MN 1500¹
| | –20 to +40 °C for NiMH single cell type: GP 180AAHC¹
| | and for alkaline single cell type: Panasonic LR6 Powerline
| | 0 to +40 °C for alkaline single cell type: Varta 4006¹, Varta 4106¹
| | 700 to 1300 hPa
| | 10 to 90 % (short-term up to 95 %) relative humidity
| Storage time | X-am 5000: 1 year
| | Sensors: 1 year
| Position of use | any

Instrument data

- Protection class: IP 67 for instruments with sensors
- Alarm volume: Typically 90 dB (A) at 30 cm distance

Operating time:

- Alkaline battery: Typically 12 hours under normal conditions
- NiMH power pack:
 - T4 (type HBT 0000): Typically 12 hours under normal conditions
 - T4 HC (type HBT 0100): Typically 13 hours under normal conditions
- Dimensions: approx. 130 mm x 48 mm x 44 mm (H x W x D)
- Weight: approx. 220 g to 250 g
- Refresh interval for display and signals: 1 s

¹ Not subject to BVS10 ATEX E 080X and PFG 10 G 001X performance approval.
12.2 Sensor data

Extract! For details, see the data sheets for the sensors used (Instructions for use/data sheets for the Dräger sensors can be downloaded from the product page for the X-am 2500 on the following website: www.draeger.com).

<table>
<thead>
<tr>
<th></th>
<th>Ex</th>
<th>XXS O₂</th>
<th>XXS H₂S-LC</th>
<th>XXS CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring principle</td>
<td>Catalytic oxidation</td>
<td>Electrochemical</td>
<td>Electrochemical</td>
<td>Electrochemical</td>
</tr>
<tr>
<td>Measurement value configuration time t₀..₀.₉₀</td>
<td>≤17 seconds for methane ≤25 seconds for propane</td>
<td>≤10 seconds</td>
<td>≤18 seconds</td>
<td>≤25 seconds</td>
</tr>
<tr>
<td>Measurement value configuration time t₀..₀.₅₀</td>
<td>≤7 seconds for methane ≤40 seconds for nonane</td>
<td>≤6 seconds</td>
<td>≤6 seconds</td>
<td>≤6 seconds</td>
</tr>
<tr>
<td>Measuring range</td>
<td>0 to 100 %LEL</td>
<td>0 to 25 vol. %</td>
<td>0 to 100 ppm H₂S</td>
<td>0 to 2000 ppm CO</td>
</tr>
<tr>
<td>Zero error (EN 45544)</td>
<td>– – –</td>
<td>– –</td>
<td>0.4 ppm</td>
<td>6 ppm</td>
</tr>
<tr>
<td>Instrument drift</td>
<td>– – –</td>
<td>– –</td>
<td>≤1 % of measured value/month</td>
<td>≤1 % of measured value/month</td>
</tr>
<tr>
<td>Warm-up time</td>
<td>35 seconds</td>
<td>≤5 minutes</td>
<td>≤5 minutes</td>
<td>≤5 minutes</td>
</tr>
<tr>
<td>Effect of sensor poisons</td>
<td>Hydrogen sulphide H₂S, 10 ppm</td>
<td>≤1 %LEL/8 hours</td>
<td>– –</td>
<td>– –</td>
</tr>
<tr>
<td></td>
<td>Halogenated hydrocarbons, heavy metals, substances containing silicone, sulphur or polymerisable substances</td>
<td>Poisoning possible</td>
<td>– –</td>
<td>– –</td>
</tr>
<tr>
<td>Linearity error</td>
<td>≤5 %LEL</td>
<td>≤0.3 vol. %</td>
<td>≤2 % of the measured value</td>
<td>≤3 % of the measured value</td>
</tr>
<tr>
<td>Standards</td>
<td>EN 60079-29-1</td>
<td>EN 50104 (measurement of oxygen deficiency and oxygen surplus)</td>
<td>EN 45544-1/-2</td>
<td>EN 45544-1/-2</td>
</tr>
<tr>
<td></td>
<td>EN 50271</td>
<td>EN 50271</td>
<td>EN 50271</td>
<td>EN 50271</td>
</tr>
<tr>
<td>Cross sensitivities</td>
<td>Fitted</td>
<td>Fitted</td>
<td>Fitted</td>
<td>Fitted</td>
</tr>
</tbody>
</table>
Technical data

<table>
<thead>
<tr>
<th></th>
<th>XXS NO₂</th>
<th>XXS SO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring principle</td>
<td>Electrochemical</td>
<td>Electrochemical</td>
</tr>
<tr>
<td>Measurement value configuration time t₀..₀,₉₀</td>
<td>≤15 seconds</td>
<td>≤15 seconds</td>
</tr>
<tr>
<td>Measurement value configuration time t₀..₅₀</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Measuring range</td>
<td>0 to 50 ppm NO₂</td>
<td>0 to 100 ppm SO₂</td>
</tr>
<tr>
<td>Zero error</td>
<td>0.2 ppm</td>
<td>0.1 ppm</td>
</tr>
<tr>
<td>Instrument drift</td>
<td>≤2 % the measuring value/month</td>
<td>≤2 % the measuring value/month</td>
</tr>
<tr>
<td>Warm-up time</td>
<td>≤5 minutes</td>
<td>≤5 minutes</td>
</tr>
<tr>
<td>Effect of sensor poisons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen sulphide H₂S, 10 ppm halogenated hydrocarbons, heavymetals, gases containing silicone, sulphur or polymerizable substances</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Linearity error</td>
<td>≤±2 % of the measured value</td>
<td>≤±2 % of the measured value</td>
</tr>
<tr>
<td>Standards (Measuring function for explosion protection and measurement of oxygen deficiency and surplus as well as toxic gases, DEKRA EXAM, Essen, Germany: BVS 10 ATEX E 080X ², PFG 10 G 001X)</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Cross sensitivities ⁸)</td>
<td>Fitted</td>
<td>Fitted</td>
</tr>
</tbody>
</table>

1) For decreasing concentrations, the adjustment time for nonane is about 50 seconds.
2) For alkanes from methane to nonane, LEL-values in accordance with EN 60079-20-1. For flow speeds of 0 to 6 m/s the deviation of the display can be 5 - 10 % of the measuring value. For an adjustment to propane, the deviation of the display in the range of 80 to 120 kPa can be up to 6 %LEL.
3) Certified for 0.4 to 100 ppm
4) Certified for 3 to 500 ppm
5) The instrument responds to most combustible gases and vapours. The sensitivities differ depending on the type of gas. We recommend a calibration using the target gas to be measured. For the range of alkanes, the sensitivity decreases from methane to nonane.
6) The measuring signals may be negatively affected by ethane, ethene, ethyne, carbon dioxide and hydrogen.
7) The measuring signals may be additively affected by sulphur dioxide, nitrogen dioxide and hydrogen, and negatively affected by chlorine.
8) The measuring signals can be affected additively by acetylene, hydrogen and nitrogen monoxide.
9) A table of the cross sensitivities is contained in the Instructions for Use or the data sheet of the respective sensor.
13 Order list

<table>
<thead>
<tr>
<th>Name and description</th>
<th>Order no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dräger X-am 2500</td>
<td></td>
</tr>
<tr>
<td>Dräger X-am 2500 standard instrument:</td>
<td></td>
</tr>
<tr>
<td>Dräger X-am 2500 Ex</td>
<td>83 23 910</td>
</tr>
<tr>
<td>Dräger X-am 2500 Ex, O<sub>2</sub></td>
<td>83 23 912</td>
</tr>
<tr>
<td>Dräger X-am 2500 Ex, O<sub>2</sub>, H<sub>2</sub>S LC</td>
<td>83 23 914</td>
</tr>
<tr>
<td>Dräger X-am 2500 Ex, O<sub>2</sub>, CO</td>
<td>83 23 916</td>
</tr>
<tr>
<td>Dräger X-am 2500 Ex, O<sub>2</sub>, CO, H<sub>2</sub>S LC</td>
<td>83 23 918</td>
</tr>
<tr>
<td>Basic instrument with selectable special calibrations, including a calibration certificate</td>
<td>83 23 900</td>
</tr>
<tr>
<td>Power supply units:</td>
<td></td>
</tr>
<tr>
<td>NiMH power pack T4 (type HBT 0000)</td>
<td>83 18 704</td>
</tr>
<tr>
<td>NiMH power pack T4 HC (type HBT 0100)</td>
<td>83 22 244</td>
</tr>
<tr>
<td>Battery holder ABT 0100</td>
<td>83 22 237</td>
</tr>
<tr>
<td>Alkaline batteries T3 (2 pcs)<sup>1</sup></td>
<td>83 22 239</td>
</tr>
<tr>
<td>Alkaline batteries T4 (2 pcs)<sup>1</sup></td>
<td>83 22 240</td>
</tr>
<tr>
<td>Rechargeable battery and charging kit (contains NiMH power pack T4, charging module for Dräger X-am 1/2/5000 and plugin power pack)</td>
<td>83 18 785</td>
</tr>
<tr>
<td>Chargers:</td>
<td></td>
</tr>
<tr>
<td>Charging module for Dräger X-am 1/2/5000</td>
<td>83 18 639</td>
</tr>
<tr>
<td>Power pack with connecting cord (worldwide) for a maximum of 20 charging modules Dräger X-am 1/2/5000</td>
<td>83 15 805</td>
</tr>
<tr>
<td>Power pack (worldwide) for a maximum of 5 charging modules Dräger X-am 1/2/5000</td>
<td>83 16 994</td>
</tr>
<tr>
<td>Power pack (worldwide) for a maximum of 2 charging modules Dräger X-am 1/2/5000</td>
<td>83 15 635</td>
</tr>
<tr>
<td>Vehicle connecting line 12 V/24 V for Dräger X-am 1/2/5000 charging module</td>
<td>45 30 057</td>
</tr>
<tr>
<td>Vehicle installation set for 1 Dräger X-am 1/2/5000 charging module</td>
<td>83 18 779</td>
</tr>
<tr>
<td>Accessories</td>
<td></td>
</tr>
<tr>
<td>The accessories are not included in BVS10ATEX E 080X and PFG 10 G 001X.</td>
<td></td>
</tr>
<tr>
<td>Pump accessories:</td>
<td></td>
</tr>
<tr>
<td>Dräger Pump X-am 1/2/5000</td>
<td>83 19 400</td>
</tr>
<tr>
<td>Case for Dräger Pump X-am 1/2/5000</td>
<td>83 19 385</td>
</tr>
<tr>
<td>Rubber ball pump</td>
<td>68 01 933</td>
</tr>
<tr>
<td>Manual pump adapter</td>
<td>83 19 195</td>
</tr>
<tr>
<td>Dust and water filter</td>
<td>83 13 648</td>
</tr>
</tbody>
</table>

### Name and description	Order no.
Extension hoses and probes: | |
Measuring probe 0.5 m | 64 08 238 |
Measuring probe 1.5 m | 64 08 239 |
Plug-in telescopic probe | 68 01 954 |
Telescopic probe 100 with accessories | 83 16 530 |
Telescopic probe 150 stainless steel | 83 16 533 |
Tester 90 | 83 16 532 |
Float probe with accessories | 83 18 371 |
Viton hose | 12 03 150 |
Hose | 11 80 681 |
Accessories for measured value acquisition and configuration: | |
Dräger GasVision | 83 14 034 |
USB DIRA with USB cable (USB infrared adaptor for communication Dräger X-am 1/2/5000 – PC) | 83 17 409 |
** Calibration/adjustment accessories:** | |
Dräger X-dock, e.g. X-dock 5300 X-am 125 | 83 21 880 |
Bump Test Station, including mixed gas cylinder | 83 19 130 |
E-Cal module Dräger X-am 1/2/5000 | 83 18 754 |
Calibration cradle Dräger X-am 1/2/5000 | 83 18 752 |
Mixed gas cylinder | 68 11 130 |
2.5 vol. % CH₄, 18 vol. % O₂, 15 ppm H₂S, 50 ppm CO | |
Test gas cylinder propane, 0.9 vol. % C₃H₈ in air | 68 11 118 |
On demand regulator | 83 16 556 |
Standard regulator | 68 10 397 |
Other accessories: | |
Protective case for Dräger X-am 1/2/5X00 | 83 21 506 |
Carrying bag | 83 18 755 |
Spare parts | |
DrägerSensor CatEx 125 PR, 0 to 100 %LEL | 68 12 950 |
DrägerSensor XXS O₂, 0 to 25 vol. %² | 68 10 881 |
DrägerSensor XXS CO, 0 to 2000 ppm¹⁾ | 68 10 882 |
DrägerSensor XXS H₂S LC, 0 to 100 ppm¹⁾ | 68 10 883 |
DrägerSensor XXS NO₂, 0 to 50 ppm | 68 10 884 |
DrägerSensor XXS SO₂, 0 to 100 ppm | 68 10 885 |

1) Not subject to the Metrological Performance Test BVS10ATEXE080X and PFG10G001X.
2) Expected service life of the sensors: O₂ and CO >5 years, CatEx > 3 years.
14 Declaration of conformity

EG-Konformitätserklärung
EC-Declaration of Conformity

Dokument Nr. / Document No. SE23158-02

Wir i we Dräger Safety AG & Co. KGaA, Revalstraße 1, 23560 Lübeck, Germany erklären in alleiniger Verantwortung, dass das Produkt declare under our sole responsibility that the product

mit der EG-Baumusterprüfbescheinigung is in conformity with the EC-Type Examination Certificate

ausgestellt von der benannten Stelle issued by the Notified Body

DEKRA EXAM GmbH
Dinnendahlstraße 9
D-44809 Bochum

BG Verkehr
Reimerstwiete 2
D-20457 Hamburg

Kenn-Nr. der benannten Stelle Identification Number of Notified Body
0158 0736

und mit den folgenden Richtlinien unter Anwendung der aufgeführten Normen übereinstimmt and is in compliance with the following directives by application of the listed standards

<table>
<thead>
<tr>
<th>Bestimmungen der Richtlinie</th>
<th>Nummer sowie Ausgabedatum der Norm</th>
</tr>
</thead>
<tbody>
<tr>
<td>94/9/EG: ATEX-Richtlinie</td>
<td>EN 60079-0:2009, EN 60079-1:2007,</td>
</tr>
<tr>
<td></td>
<td>EN 60079-28:2007, EN 50303:2000,</td>
</tr>
<tr>
<td>96/98/EG: Schiffscausrüstungs-Richtlinie</td>
<td>EN 60945:2002 & Cor.1:2008,</td>
</tr>
<tr>
<td></td>
<td>EN 50104:2002 & A1:2004,</td>
</tr>
<tr>
<td></td>
<td>EN 60079-29:1-2007, IEC 60079-0:2007,</td>
</tr>
<tr>
<td></td>
<td>IEC 60079-1:2007 & Cor.1:2008,</td>
</tr>
</tbody>
</table>

Überwachung der Qualitätssicherung
Production durch
Surveillance of Quality Assurance Production by

DEKRA EXAM GmbH
Dinnendahlstraße 9
D-44809 Bochum

BG Verkehr
Reimerstwiete 2
D-20457 Hamburg

Kenn-Nr. der benannten Stelle Identification Number of Notified Body
0158 0736

Lübeck, 2014-06-13

Ort und Datum (jjj-mm-tyy) Place and date (yyyy-mm-dd)

Ingo Pooch
Leiter
Forschung & Entwicklung
Gasmessgeräte

Ingo Pooch
Manager
Research & Development
Gas Detection Instruments