MiniRAE 2000

Portable VOC Monitor PGM-7600

OPERATION AND MAINTENANCE **MANUAL**

(Document No.: 011-4001-000) Revision E, May 2005

info@tttenviro.com

www.tttenviro.com

ATTENTION!

For European Applications

- A. C€ 0575 © II 1G/2G DEMKO 03 ATEX 0204759X Eex ia IIC T4
- B. Recharge batteries only in non-hazardous locations.
- C. Do not connect external cable to serial interface jack in hazardous locations.
- D. Use RAE Systems Adapter P/N 500-0072 for connection to communication port and charging jack only in a non-hazardous area.

Table of Contents

ı.	G	ENERAL INFORMATION	1-1
	1.1	General Specifications	
2.	O	PERATION OF MINIRAE 2000	2-1
	2.1	Physical Description	2-2
	2.2	Keys and Display	2-3
	2.3	Power On/Off	2-4
	2.4	Operation	2-5
	2.4	4.1 Survey Mode	2-6
	2.	4.2 Hygiene Mode	
	2.5	Alarm Signals	
	2.6	Preset Alarm Limits and Calibration	2-18
	2.7	Integrated Sampling Pump	2-19
	2.8	Back Light	2-20
	2.9	Datalogging	2-21
3.	O	PERATION OF ACCESSORIES	3-1
3.	O 3.1	PERATION OF ACCESSORIES Standard Kit and Accessories	
3.			3-2
3. 4.	3.1 3.2	Standard Kit and Accessories	3-2 3-5
	3.1 3.2	Standard Kit and Accessories Optional Accessories	3-2 3-5 4-1
	3.1 3.2 P 1	Standard Kit and Accessories Optional Accessories ROGRAMMING OF MINIRAE 2000.	3-2 3-5 4-1 4-2
	3.1 3.2 P 4.1	Standard Kit and Accessories Optional Accessories ROGRAMMING OF MINIRAE 2000. Programming Mode	3-2 3-5 4-1 4-2 4-3
	3.1 3.2 P 4.1 4.2	Standard Kit and Accessories Optional Accessories ROGRAMMING OF MINIRAE 2000. Programming Mode Keys for Programming Mode Entering into Programming Mode	3-2 3-5 4-1 4-2 4-3
	3.1 3.2 P 4.1 4.2 4.3 4.4	Standard Kit and Accessories Optional Accessories ROGRAMMING OF MINIRAE 2000. Programming Mode Keys for Programming Mode Entering into Programming Mode	3-2 4-1 4-2 4-3 4-4
	3.1 3.2 P 1 4.1 4.2 4.3 4.4 4.4	Standard Kit and Accessories Optional Accessories ROGRAMMING OF MINIRAE 2000. Programming Mode Keys for Programming Mode Entering into Programming Mode Calibrate and Select Gas	3-2 3-5 4-1 4-2 4-3 4-4 4-5 4-8
	3.1 3.2 P 2 4.1 4.2 4.3 4.4 4.4	Standard Kit and Accessories Optional Accessories ROGRAMMING OF MINIRAE 2000. Programming Mode Keys for Programming Mode Entering into Programming Mode Calibrate and Select Gas 4.1 Fresh Air Calibration 4.2 Span Calibration 4.3 Select Cal Memory	3-2 4-1 4-2 4-3 4-4 4-5 4-9 4-11
	3.1 3.2 P : 4.1 4.2 4.3 4.4 4.4 4.4	Standard Kit and Accessories Optional Accessories ROGRAMMING OF MINIRAE 2000. Programming Mode Keys for Programming Mode Entering into Programming Mode Calibrate and Select Gas 4.1 Fresh Air Calibration 4.2 Span Calibration 4.3 Select Cal Memory 4.4 Change Span Value	3-2 4-1 4-2 4-3 4-4 4-5 4-9 4-11 4-12
	3.1 3.2 P 2 4.1 4.2 4.3 4.4 4.4 4.4	Standard Kit and Accessories Optional Accessories ROGRAMMING OF MINIRAE 2000. Programming Mode Keys for Programming Mode Entering into Programming Mode Calibrate and Select Gas 4.1 Fresh Air Calibration 4.2 Span Calibration 4.3 Select Cal Memory	3-2 3-5

4.5 Ch	nange Alarm Limits	4-15
4.5.1	Change Low Alarm Limit	4-17
	Change STEL Limit	
4.5.3	Change TWA Limit	4-19
	ew or Change Datalog	
4.6.1	Reset Peak/Minimum	4-21
	Clear Data	
	Change Data Period	
	Change Average Type	
	nange Monitor Setup	
	Change Operation Mode	
	Change Site ID	
	Change User ID	
	Change Alarm Mode?	
	Change User Mode	
4.7.6	8-	
4.7.7	8-	
	Change Lamp	
	Change Unit	
	OChange Dilution Ratio	
	Change Output?	
	2 Change DAC Range?	
	3 Set Temperature Unit?	
	it Programming Mode	
	EORY OF OPERATION	
	INTENANCE	
	ttery Charging and Replacement	
6.2 PI	D Sensor & Lamp Cleaning /Replacement.	6-4
	mpling Pump	
	rning on the UV Lamp	
7. TRO	OUBLESHOOTING	7-1
	oubleshooting Table	
APPENDI	X A. QUICK REFERENCE GUIDE	A-2

- Do NOT proceed before reading -

This manual must be carefully read by all individuals who have or will have the responsibility for using, maintaining, or servicing this product.

The product will perform as designed only if it is used, maintained, and serviced in accordance with the manufacturer's instructions.

CAUTION!!

To reduce the risk of electric shock, turn off power before removing the monitor cover. Disconnect the battery before removing sensor module for service. Never operate the monitor while the cover is removed. Remove monitor cover and sensor module only in an area known to be nonhazardous.

The model PGM-7600 equipment is classified as to intrinsic safety for use in class I, division 1, groups A, B, C, D, or non-hazardous locations only.

Special Notes

-1-

When the MiniRAE 2000 Monitor is taken out from the transport case and turned on for the first time, there may be some residual organic or inorganic vapor trapped inside the detector chamber. The initial PID sensor reading may indicate a few ppm. Enter an area known to be free of any organic vapor and turn on the monitor. After running for several minutes, the residual vapor in the detector chamber will be cleared and the reading should return to zero.

-2-

The battery of the MiniRAE 2000 monitor will discharge slowly even if it is turned off. If the monitor has not been charged for 5-7 days, the battery voltage will be low. Therefore, it is a good practice to always charge the monitor before using it. It is also recommended to fully charge the monitor FOR AT LEAST 10 HOURS before first use. See Section 7 for more information on battery charging and replacement.

WARNINGS

STATIC HAZARD: Clean only with damp cloth.

For safety reasons this equipment must be operated and serviced by qualified personnel only. Read and understand instruction manual completely before operating or servicing.

Use only RAE Systems battery packs, part nos. 012-3050, 012-3051 or 012-3052. This instrument has not been tested in an explosive gas/air atmosphere having an oxygen concentration greater than 21%. Substitution of components may impair intrinsic safety. Recharge batteries only in non-hazardous locations.

The calibration of all newly purchased RAE Systems instruments should be tested by exposing the sensor(s) to known concentration calibration gas before the instrument is put into service.

For maximum safety, the accuracy of the MiniRAE 2000 should be checked by exposing it to a known concentration calibration gas before each day's use.

AVERTISSEMENTS

DANGER RISQUE D'ORIGINE ELECTROSTATIQUE: Nettoyer uniquement avec un chiffon humide.

Pour des raisons de sécurité, cet équipment doit être utilisé, entretenu et réparé uniquement par un personnel qualifié. Étudier le manuel d'instructions en entier avant d'utiliser, d'entretenir ou de réparer l'équipement.

Utiliser seulement l'ensemble de batterie RAE Systems, la reference 012-3050, 012-3051 au 012-3052. Cet instrument n'a pas été essayé dans une atmosphère de gaz/air explosive ayant une concentration d'oxygène plus élevée que 21%. La substitution de composants peut compromettre la sécurité intrinsique. Ne charger les batteries que dans emplacements désignés non-dangereuse.

La calibration de toute instruments de RAE Systems doivent être testé en exposant l'instrument a une concentration de gaz connue par une procédure diétalonnage avant de mettre en service l'instrument pour la première fois.

Pour une securite maximale, la sensibilité du MiniRAE 2000 doit être verifier en exposant l'instrument a une concentration de gaz connue par une procédure diétalonnage avant chaque utilisation journalière.

1. GENERAL INFORMATION

MiniRAE 2000 Portable VOC Monitor (Model PGM 7600) is a compact monitor designed as a broadband VOC gas monitor and datalogger for work in hazardous environments. It monitors Volatile Organic Compounds (VOC) using a Photo-Ionization Detector (PID) with a 9.8 eV, 10.6 eV, or 11.7 eV gas discharge lamp. Features are:

Lightweight and Compact

- -Compact, light weight (19 oz.) and rugged design
- -Built-in sample draw pump

• Dependable and Accurate

- Up to 10 hours of continuous monitoring with rechargeable battery pack
- Designed to continuously monitor VOC vapor at ppm levels

• User Friendly

-Preset alarm thresholds for STEL, TWA, low and high level peak values. Audio buzzer and flashing LED display are activated when the limits are exceeded.

• Datalogging Capabilities

-15,000 point datalogging storage capacity for data download to PC

MiniRAE 2000 consists of a PID with associated microcomputer and electronic circuit. The unit is housed in a rugged ABS + PC case with a backlit 1 line by 8 character dot matrix LCD and 3 keys to provide easy user interface.

1.1 General Specifications

Table 1.1

Portable	VOC Monitor	Specification
-----------------	--------------------	---------------

Size: 8.2"L x 3.0"W x 2.0"H

Weight: 19.5 oz with battery pack

Detector: Photo-ionization sensor with 9.8, 10.6, or 11.7 eV

UV lamp

Battery: A 4.8V /1250 mAH Rechargeable Nickel Metal Hydride battery

pack (snap in, field replaceable)

Battery Charging: 10 hours charge through built-in charger

Operating Hours: Up to 10 hours continuous operation

Display: 1 line by 8 characters 5x7 dot matrix LCD (0.4"

character height) with LED back light

automatically in dim light

Range, Resolution & Response time (t₉₀):

Isobutylene (calibration gas)

0-99 ppm 0.1 ppm 2 sec 100-1,999 ppm 1.0 ppm 2 sec 2000-10,000 ppm 1.0 ppm 2 sec

Measurement Accuracy (Isobutylene):

0-2000 ppm: $\pm\,2$ ppm or 10% of reading.

> 2000 ppm: $\pm 20\%$ of reading

PID Detector: Easy access to lamp and sensor for cleaning and

replacement

Correction Factors: Built-in 102 VOC gases

Calibration: Two-point field calibration of zero and standard

reference gas

Calibration Memory:

Store up to 8 separate calibration, alarm limits

and span value

Inlet Probe: Flexible 5" tubing

Keypad: 1 operation key and 2 programming keys

GENERAL INFORMATION

Direct Readout:	Instantaneous, average, STEL and peak value, battery voltage and elapsed time
Intrinsic Safety:	UL & cUL Class 1, Division I, Group A,B,C,D,
	Temperature Code T3C (US & Canada); C € 0575 II 1G DEMKO 02 ATEX 0204759
	Eex ia IIC T4 (Europe)
EM Interference:	No effect when exposed to 0.43 W/cm ² RF interference (5 watt transmitter at 12 inches)
Alarm Setting:	Separate alarm limit settings for Low, High, STEL and TWA alarm
Operating Mode:	Survey or Hygiene mode
Alarm: 90 dB buzzer and	I flashing red LEDs to indicate exceeded preset limits, low battery voltage, or sensor failure.
External Alarm:	Optional plug-in pen-size vibration alarm or remote alarm
Alarm Mode:	Latching or automatic reset
Real-time Clock:	Automatic date and time stamps on data logged information
Datalogging:	15,000 points with time stamp, serial number, user ID, site ID, etc.
Communication:	Upload data to PC and download instrument setup from PC through RS-232 port
Sampling Pump:	Internally integrated. Flow rate: 450-550 cc/min.
Temperature:	0° to 45°C (32° to 113°F)
Humidity:	0 % to 95 % relative humidity
	(non-condensing)
Housing:	ABS + PC, conductive coating, splash and dust proof, will withstand 1 meter drop test with

Wrist strap, rubber boot and belt clip

rubber boot

Attachment:

2. OPERATION OF MINIRAE 2000

The MiniRAE 2000 Portable VOC Monitor is a compact Monitor designed as a broadband VOC gas monitor and datalogger for work in hazardous environments. It gives real time measurements and activates alarm signals whenever the exposure exceeds preset limits. Prior to factory shipment the MiniRAE 2000 is preset with default alarm limits and the sensor is pre-calibrated with standard calibration gas. However, the user should test the instrument and verify the calibration before the first use. After the monitor is fully charged and calibrated, it is ready for immediate operation.

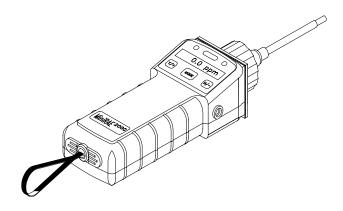


Figure 2-1 MiniRAE 2000

2.1 Physical Description

The main components of the MiniRAE 2000 Portable VOC monitor include:

- Three keys for user to interact with the monitor: 1 operation key and 2 programming keys for normal operation or programming of the monitor
- LCD display with back light for direct readout and calculated measurements
- Buzzer and red LED's for alarm signaling whenever the exposures exceed preset limits
- Wrist strap
- Charge contact for plugging directly to the charging station
- Gas entry and exit ports
- Serial communication port for PC interface
- External alarm and analog output port
- Protective rubber cover

2.2 Keys and Display

Figure 2.2 shows the LCD display and the keypad on the front panel of the monitor. The function of the 3 keys during normal operation are summarized below:

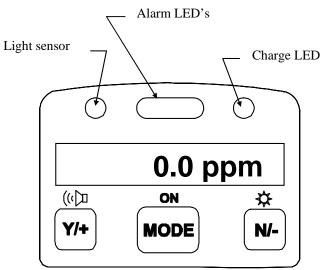


Figure 2-2 LCD Display and Keypad

Key Function in Normal Operation

[MODE] -Turn on/off the power* and step through menu items

[N/-] -Toggle on/off the back light, negative acknowledge, decrease value

[Y/+] -Start measurement, positive acknowledge, increase value value

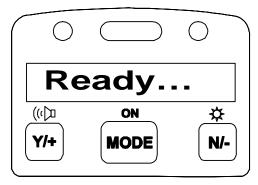
* Pressing and holding [MODE] key for 5 seconds turns off the power to the monitor. Monitor will beep once per second and display countdown timer during power-down sequence. Press [MODE] key momentarily to step through menu items. To save time, press any key during message scrolling to skip to the end of the message.

2.3 Power On/Off

To turn on the MiniRAE 2000 portable VOC monitor, press [MODE] key for one second and release. The audio buzzer will beep once and the air pump will turn on. The display will show "ON!.." and then "Ver n.nn" to indicate the unit's current firmware version number. Next displayed are the serial number, the model number, Operating mode, current date and time, unit internal temperature, gas selected, high low, STEL, TWA/AVG alarm limits, battery voltage, and shut off voltage. Also displayed are internal mode settings such as User mode, Alarm mode, datalog time remaining and log periods in the respective order.

To turn off the MiniRAE 2000 portable VOC monitor, press and hold the [MODE] key for 5 seconds. The monitor will beep once per second during the power-down sequence with a count down timer showing the number of remaining seconds. The message "Off!.." flashes on the LCD display and the display will go blank indicating that the monitor is turned off.

Data protection during power off


When the monitor is turned off, all the current real time data including last measured value are erased. However, the datalog data is preserved in non-volatile memory. Even if the battery is disconnected, the datalog data will not be lost. While the power is off, the real time clock will continue to operate until the battery is completely drained (usually in 4-5 days without any charging). If the battery is completely drained or is disconnected from the monitor for more than 30 minutes, the real time clock will be lost. In this case, the user needs to enter the real time clock information again, as described in Section 4, or send the PC clock during configuration through the PC communication.

2.4 Operation

The **MiniRAE 2000** VOC monitor has two operation modes: **Survey** and **Hygiene** mode. The **Survey mode** allows the user to manually start and stop the monitoring/measuring operation and display certain exposure values. In the **Hygiene mode**, the monitor runs continuously after the monitor is turned on. Refer to Section 4.7.1 for switching between the two modes.

2.4.1 Survey Mode

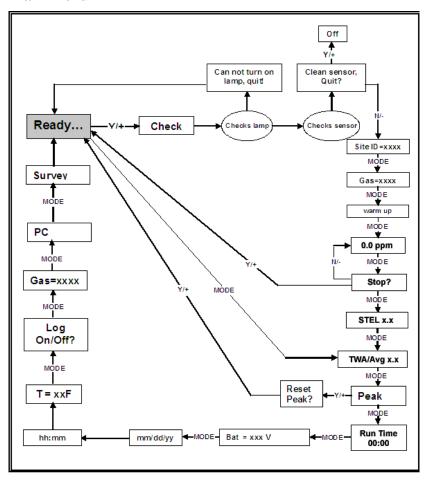
After the monitor is turned on, it runs through the start up menu. Then the message "**Ready...**" is displayed (see figure below).

At this point, the user has two options:

- 1. Step through the Main Menu.
- 2. Take a measurement.

Press the **[MODE]** button to step through the Main Menu. Press the **[Y/+]** button to proceed to take a measurement.

The Main Menu


Press the [MODE] button to enter the Main Menu. Press the [Y/+], [MODE] or [N/-] as indicated in the flow chart below to step through the Main Menu. The PID sensor and pump are turned off during this time.

The Main Menu functions are:

- Ready...
- Check
- Site ID = xxxx
- Gas = xxxx
- Warm up
- X.x ppm
- Stop?
- TWA/Avg x.x ppm
- STEL x.x ppm
- Peak x.x ppm
- Run time hh:mm
- Bat = X.XV
- Mm/dd/yy
- hh:mm
- T = xxxF [date, time and temperature (°C or °F)]
- Log On/Off?
- PC Comm?
- Survey

These functions are arranged in a "round robin" order. To select a specific function, press the button as shown below until the desired function appears.

Main Menu

The Main Menu Functions

• **Ready...:** Indicates that the monitor is ready to take a measurement or to step through the Main Menu. Press the [Y/+] button to advance to taking a measurement (read "Taking a Measurement" on Page 2-12 for details).

Note: The **Ready...** screen is skipped if the menu is cycled through while a measurement is running.

- Check...: This message displays while the system is checking the lamp and the sensor. If the lamp test succeeds, the system will progress to checking the sensor. If the lamp test does not succeed, the display will read Can not turn on lamp, quit!
 - Can not turn on lamp, quit!: This message displays when the lamp does not turn on. The system will automatically return to **Ready...** allowing the user to test the lamp again. If the lamp fails a second time, turn the monitor off and refer to Section 7.2 "PID Sensor & Lamp Cleaning / Replacement".
 - Clean Sensor, Quit?: This message displays when the sensor requires cleaning. Press the [Y/+] button to turn the monitor off and clean the sensor. Press the [N/-] button and the system will progress to the Site ID = xx
- **Site ID** = **xxxx**: This display shows the Site ID and indicates that the monitor is about to start taking measurements (read "Taking a Measurement" for details)
 - Note: This display appears only after a measurement has been started. It does not appear when the user is cyling through the Main Menu and the monitor is idling.
- **Gas** = **xxxx**: This display identifies the gas to be measured and indicates that the monitor is about to take a measurement (read "Taking a Measurement" for details)

Note: This display appears only after a measurement has been started. It does not appear when the user is cyling through the Main Menu and the monitor is idling.

• **x.x ppm:** (read "Taking a Measurement" for details)

Note: This display appears only after a measurement has been started. It does not appear when the user is cyling through the Main Menu and the monitor is idling.

- **TWA/Avg:** Displays (in ppm) the Time Weighted Average (TWA) or the Average since the start of the measurement. The average is recalculated every minute.
- **STEL:** Displays the Short Term Exposure Limit.
- **PEAK:** Displays (in ppm) the highest instantaneous reading since the start of the measurement. If [Y/+] is pressed while the peak reading is displayed, the unit will ask **Reset Peak?**. If [Y/+] is pressed again, the peak value will be cleared and the display will return to the **Ready...** message or instantaneous reading. The peak reading is automatically reset when a new measurement is started by pressing [Y/+] from the **Ready...** screen.
- Run time hh:mm: The duration of the current measurement period.
- **Bat = X.XV:** The current battery voltage.

Note: A fully charged battery pack should show 4.8 volts or higher. When the battery voltage falls below 4.4 volts, a flashing "Bat" will appear as a warning message. At that point, you have 20-30 minutes of run time remaining. When the battery voltage falls below 4.2 volts the monitor turns off automatically.

- **Mm/dd/yy:** The current date.
- **hh:mm:** The current time (24-hour format)

- T = xxxF: The internal unit temperature in degrees Fahrenheit. (see Section 4.7.13 to change temperature units)
- Log on/Off?: Allows the user to start datalogging of the current measurement. A superscript "L" flashes in the ppm measurement display when datalogging is on. This screen is not shown when datalogging is disabled or when the monitor is not operating in manual start/stop mode.
- **PC Comm?:** This function enables the user to upload data from the MiniRAE 2000 to a Personal Computer (PC) or send/receive configuration information between a PC and the MiniRAE 2000. Press [MODE] to return to **Ready...**.

To communicate with a PC, connect the monitor to the serial port of a PC and start the MiniRAE 2000 application software. Press the [Y/+] button and the LCD displays "pause monitor, ok?" Press the [Y/+] button one more time, and the display shows "Comm..." The monitor is now ready to receive commands from the PC.

• **Survey:** This function displays the Current Operating Mode (**Survey** or **Hygiene**).

Taking a Measurement

There are two ways to start a measurement.

- 1. Operating in Hygiene mode.
- 2. Manually start and stop measurement in Survey mode.

To start a measurement in Hygiene mode, please refer to Section 4.7.1, "Change Operation Mode". To start a measurement in Survey Mode, the MiniRAE 2000 monitor must first be in the "Ready..." mode. This is the mode to which the monitor normally powers up.

Measurement phases

- 1. Ready
- 2. Start measurement
- 3. Measurement display and datalogging
- 4. Stop measurement

Ready

The display reads **Ready...** indicating the unit is ready to start a measurement.

Start Measurement

Press the [Y/+] button to start the check cycle (see above), and then the measurement cycle.

After completing the **Check** cycle, the display will show the **Site ID** and then the **Gas** selected for measurement. The pump will start and the reading will be displayed. The **Peak** and **Average** values will be automatically reset to zero.

Measurement Display and Datalog

Instantaneous readings of the gas concentration in parts per million (ppm) are updated every second. A flashing superscript **L** is displayed when datalogging is on. Datalog information is saved only after one full datalog period is completed.

Stop Measurement

Press the [MODE] button and the display shows Stop? Press [N/-] to continue measurement and [Y/+] to stop the measurement and datalog event. The pump stops automatically when measurement is stopped. Peak and average values for the current measurement can be read in idle mode until a new measurement is started.

Automatic Increment of Site ID

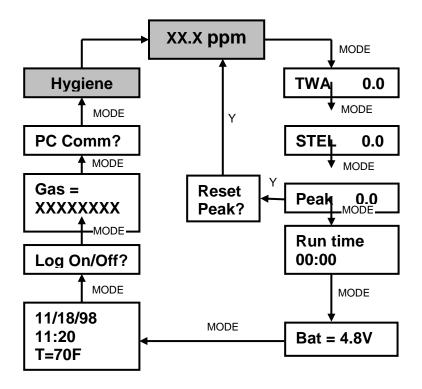
Every time a measurement is taken, the site ID will be incremented by one automatically in Survey mode.

Variable Alarm Signal

In Survey Mode, if the measurement exceeds the low alarm limit, the buzzer and flashing alarm are activated and will beep/flash once per second. The alarms will increase in frequency as the gas concentration approaches the high alarm limit reaching 8 times per second when the high alarm has been exceeded.

Press [Y/+] key to clear if latching alarm.

2.4.2 Hygiene Mode


In Hygiene Mode, the unit will continuously taking measurements, once the power is turned on. After the initial start-up sequence displaying the current monitor settings, the LCD displays the instantaneous readings.

The Hygiene operation menu displays include:

- Real time readings in ppm
- Current TWA/Avg, STEL and Peak values (see Section 4.6.6)
- Run time
- Current battery voltage
- Date, time and temperature
- Log on/off?
- Gas name
- PC communication?
- Hygiene

Detailed description of most of these displays are the same as Section 2.4.1.

HYGIENE MODE MAIN MENU

To choose a specific display, press the **[MODE]** key one or more times until the desired display appears, or the **[Y/+]** key where indicated with a Y.

Note: To get back to instantaneous reading from any of the above display, press [MODE] key repeatedly until the "XX.X ppm" display appears.

2.5 Alarm Signals

During each measurement period, the gas concentration is compared with the programmed alarm limits (gas concentration alarm limit settings: Low, High, TWA and STEL). If the concentration exceeds any of the preset limits, the loud buzzer and red flashing LED are activated immediately to warn the user of the alarm condition.

In addition, the MiniRAE 2000 will alarm if one of the following conditions occurs: battery voltage falls below a preset voltage level (4.4 V), failure of UV lamp, pump stall, or when the datalog memory is full. When the low battery alarm occurs, there will be approximately 20-30 minutes of operating time remaining. When the battery voltage falls below 4.2 V, the monitor will turn off automatically.

Alarm Signal Summary:

Condition	Alarm Signal
Gas exceeds "High Alarm" limit	3 beeps/flashes per second
Gas exceeds "Low Alarm" limit	2 beeps/flashes per second
Gas exceeds "TWA" limit	1 Beeps/flashes per seconds
Gas exceeds "STEL" limit	1 Beeps/flashes per seconds
Pump failure	3 beeps/flashes per second plus "Pump" message on LCD
PID lamp failure	3 beeps/flashes per second plus "Lamp" message on LCD
Low battery	1 flash per second, 1 beep per minute plus "Bat" message on LCD
Memory full	1 flash per second plus "Mem" message on LCD

Alarm Signal Testing:

Under normal non-alarm conditions, it is possible to test the MiniRAE 2000 LED and buzzer in Special Diagnostic Mode (see Section 8 for details).

2.6 Preset Alarm Limits and Calibration

The MiniRAE 2000 portable VOC monitor is factory calibrated with standard calibration gas, and is programmed with default alarm limits. There are 102 gas settings stored in the library. Some examples of calibration and alarm limits are shown below. Refer to Section 4 on programming procedures for selecting a different gas, perform a calibration or set new alarm limits.

Factory Calibration and Preset Alarm Limits

Cal Gas	Cal Span	unit	Low	High	TWA	STEL
Isobutylene	100	ppm	50	100	100	250
Hexane, n-	100	ppm	500	750	500	750
Xylene, m-	100	ppm	100	150	100	150
Benzene	5	ppm	2	5	5	2
Styrene	50	ppm	20	40	20	40
Toluene	100	ppm	50	100	50	100
Vinyl Chloride	10	ppm	5	10	5	10
Custom	100	ppm	50	100	50	100

2.7 Integrated Sampling Pump

The MiniRAE 2000 portable VOC monitor includes an integrated sampling pump. This is a diaphragm type pump that provides a 500-600 cc per minute flow rate. Connecting a Teflon or metal tubing with 1/8 inch inside diameter to the gas inlet port of the MiniRAE 2000, this pump can pull in air samples from 200 feet away horizontally, or 90 feet vertically, at about 3 feet per second flow speed.

The pump turns on when a measurement is started, and turns off when the sample is manually stopped in Survey mode or when the unit is turned off from Hygiene Mode.

If liquid or other objects are pulled into the inlet port filter, the monitor will detect the obstruction and shut down the pump immediately. The alarm will be activated and a flashing error message "Pump" will be also displayed on the LCD display.

The user should acknowledge the pump shut off condition by clearing the obstruction and pressing the [Y/+] key to re-start the pump.

The pump stall threshold is set in the special Diagnostic Mode (Section 8).

2.8 Back Light

The LCD display is equipped with an LED back light to assist in reading the display under poor lighting conditions. Pressing and holding the [N/-] key for one second in normal operation can turn on the backlight. The backlight can be turned off by pressing [N/-] a second time. If the [N/-] key is not pressed, the back light will be turned off automatically after a preprogrammed time-out period to save power.

In addition, the ambient light is sensed and the back light will be turned on automatically if the ambient light is below a threshold level. The back light is turned off automatically when the ambient light exceeds the threshold level.

See Section 8 for instructions on how to set the light threshold level.

Note: The LED backlight consumes about 20-30% of the total average current, when the instrument is idle or not taking a measurement.

2.9 Datalogging

During datalogging, the MiniRAE 2000 Portable VOC monitor flashes a superscript "L", on the display to indicate that datalogging is enabled. The monitor stores the time stamp, sample number, and measured gas concentration at the end of every sample period (when data logging is enabled). In addition, the following information are stored: user ID, site ID, serial number, last calibration date, and alarm limits. All data are retained (even after the unit is turned off) in non-volatile memory so that it can be down loaded at a later time to a PC.

Datalogging event

When Datalogging is enabled, measurement readings are being saved. These data are stored in "groups" or "events. A new event is created and stored each time the monitor is turned on, or a configuration parameter is changed, or datalogging is interrupted (e.g. Communication with PC during Hygiene mode). Information, such as start time, user ID, site ID, gas name, serial number, last calibration date, and alarm limits will be recorded.

Datalogging sample

After an event is recorded, the unit records a shorter form of the data. This data contains: the sample number, time (hour/minute) and gas concentration.

3. OPERATION OF ACCESSORIES

The accessories for the MiniRAE 2000 include:

- An AC Adapter (Battery Charger)
- Alkaline battery holder
- Water Trap Filter

Optional Accessories:

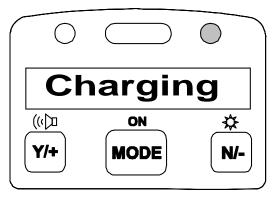
- Dilution Fitting
- Calibration adapter
- Calibration regulator and Flow controller
- Organic Vapor Zeroing kit

3.1 Standard Kit and Accessories

1) AC Adapter (Battery Charger)

WARNING

To reduce the risk of ignition of hazardous atmospheres, recharge battery only in area known to be non-hazardous. Remove and replace battery only in area known to be non-hazardous.


Ne charger les batteries que dans emplacements designés non-dangereuses.

A battery charging circuit is built into the MiniRAE 2000 monitor. It only needs a regular AC to 12 V DC adapter (wall mount transformer) to charge the monitor.

To charge the battery inside the MiniRAE 2000 monitor:

- 1. Power off the Monitor.
- 2. Connect the AC adapter (or the optional automotive charging adapter) to the DC jack on the MiniRAE 2000 monitor. If the unit was off, it will automatically turn on.
- 3. The first message displayed will be "Deep discharge?" The unit will ask this question for three times. If the user wants to discharge the battery pack, affirm this query with the [Y/+] key, otherwise the unit will move on to the charge mode directly.

4. While charging, the display message will alternate between "Charging" and "Bat=x.xV" (x.x is the present battery voltage). The LED should be red in color when charging.

5. When the battery is fully charged, the LED will change from red to green and the message "Fully charged" will appear on the display. After the battery is fully charged, the unit will enter the "trickle charge" mode. In which, the red LED will turn on for several seconds every minute, to maintain the full charge.

A completely discharged MiniRAE 2000 monitor will be charged to full capacity within 10 hours. The battery will be drained slowly even if the monitor is turned off. If the monitor has not been charged for 7-10 days, the battery voltage will be low.

The factory-supplied battery is designed to last for 10 hours of normal operation (no alarm, no back light condition), for a new battery under the best condition. As the battery becomes older or is subject to adverse conditions (such as cold ambient temperature), the battery capacity will be reduced significantly.

2) Alkaline Battery Holder

An alkaline battery holder is supplied with each MiniRAE 2000. It accepts four AA size alkaline batteries and can be used in place of the Ni-MH or Ni-Cd battery pack to provide approximately 12-14 hours of operation. The adapter is intended to be used in emergency situations when there is no time to charge the Ni-Cd or Ni-MH battery pack.

To install the adapter, remove the cover of the battery compartment. Remove the Ni-Cd or Ni-MH battery pack from the battery compartment and replace with the alkaline battery adapter. Replace the battery compartment cover.

The internal charging circuit is designed to prevent damage to alkaline batteries and the charging circuit when alkaline batteries are installed inside the monitor.

Note: The AA Alkaline battery adapter supplied by RAE Systems Inc. is intrinsically safe!

3) Water Trap Filter

The water trap filter is made of PTFE (Teflon®) membrane with a 0.45 micron pore size to prevent water from being sucked into the sensor manifold, which would cause extensive damage to the monitor. It will also remove any dust and other particles from entering the monitor and prolong the operating life of the sensor. To install the water trap, simply insert it to the front of the inlet tube of the MiniRAE 2000 monitor.

3.2 Optional Accessories

1) Dilution Fitting

The user may wish to install a dilution fitting on the inlet to dilute the gas samples. One application for a dilution fitting is to measure organic gas when the concentration exceeds the upper limit of the sensor range.

Make sure to set the dilution ratio in the programming mode (see Section 4.7.9) so that the correct gas reading will be displayed when the dilution fitting is used.

WARNING: To use a dilution fitting, the user must have the monitor located in a clean atmosphere outside the confined space and use a remote access probe or Tygon tubing to measure the gas concentration inside the confined space.

2) Calibration Adapter

The calibration adapter for the MiniRAE 2000 is a simple 6-inch Tygon tubing with a metal adapter on one end. During calibration, simply insert the metal adapter into the regular gas inlet probe of the MiniRAE 2000 and the tubing to the gas regulator on the gas bottle.

3) Calibration Regulator and Flow Controller

The Calibration Regulator and Flow controller is used in the calibration process. It regulates the gas flow rate from the Span gas cylinder into the gas inlet of the MiniRAE 2000 monitor during calibration process. The maximum flow rate allowed by the flow controller is about 0.5L/min (500 cc per min.). Alternatively, a Demand-flow Regulator or a Tedlar gas bag may be used to match the pump flow precisely.

4) Organic Vapor Zeroing kit (Charcoal filter)

The Organic Vapor Zeroing Kit is used for filtering organic air contaminants that may affect the zero calibration reading. To use the Organic Vapor Zeroing Kit, simply connect the filter to the inlet port of the MiniRAE 2000.

4. PROGRAMMING OF MINIRAE 2000

The MiniRAE 2000 Monitor is built with a microcomputer to provide programming flexibility. Authorized users can recalibrate the monitor, change the alarm limits, change site ID, user ID, lamp type, and real time clock, etc.

Programming is menu-driven to provide intuitive end-user operation. The display shows the menu options and the key pad used for menu selection and data entry.

4.1 Programming Mode

The programming mode allows the users to change the setups in calibrate the monitor, modify monitor, the sensor information. configuration user and enter etc. The programming mode has four menu items. Each menu item includes several sub-menus to perform additional programming functions. Appendix A shows a more detailed menu tree structure

Programming Menu

Calibrate/Select Gas?

Change Alarm Limits?

Change Datalog?

Change Monitor Setup?

Once inside the programming mode, the LCD will display the first menu. Each subsequent menu item can be viewed by pressing the [N/-] repeatedly until the desired menu is displayed. To enter the sub-menu of a particular menu, press [Y/+] key, the sub-menu will be displayed.

Return to Operation mode: To exit the programming mode and return to operation, press the [MODE] key once at any of the programming menu displays.

4.2 Keys for Programming Mode

The three keys perform a different set of functions during the programming mode as summarized below.

Key	Function in Programming Mode
[MODE]:	Exit menu when pressed momentarily or exit data entry mode when pressed and held for 1 second
[Y/+]:	Increase alphanumerical value for data entry or confirm (yes) for a question
[N/-]:	Decrease alphanumerical value for data entry or deny (no) for a question

4.3 Entering into Programming Mode

- 1. Turn on the MiniRAE 2000 monitor and wait for the "Ready.." message or the instantaneous reading display "0.0 ppm" message displayed.
- 2. Press and hold down both [N/-] and [MODE] keys for three seconds to enter programming mode. This delay is to prevent the user from entering programming mode by accident.
- 3. The first menu item "Calibrate/select Gas?" will be displayed.
- 4. Release both [MODE] and [N/-] keys simultaneously to start the programming mode
- 5. Press [N/-] key to scroll to the next menu item of the programming menu. Press [Y/+] key to select the displayed menu item.

The following Sections 4.4 - 4.7 describe the details of each menu options.

4.4 Calibrate and Select Gas

WARNINGS

The calibration of all newly purchased RAE Systems instruments should be tested by exposing the sensor(s) to known concentration calibration gas before the instrument is put into service for the first time.

For maximum safety, the accuracy of the MiniRAE 2000 should be checked by exposing it to known concentration calibration gas before each day's use.

In the first menu of the programming mode, the user can perform functions such as calibration of the MiniRAE 2000 Monitor, select default cal memories, and modify cal memories (see Table 4.4).

Table 4.4

Calibrate/Select Gas Sub-Menu

Fresh Air Cal?

Span Cal?

Select Cal Memory?

Change Span Value?

Modify Cal Memory?

Change Correction Factor?

Calibrating the MiniRAE 2000 monitor is a two-point process using "fresh air" and the standard reference gas (also known as span gas). First a "Fresh air" calibration, which contains no detectable VOC (0.0 ppm), is used to set the zero point for the sensor. Then a standard reference gas that contains a known concentration of a given gas is used to set the second point of reference.

Note: The span value must be set prior to calibrating for fresh air or span.

The user can store calibrations for up to 8 different measurement gases. The default gas selections are as follows:

Cal Memory #0.....Isobutylene

Cal Memory #1.....Hexane

Cal Memory #2.....Xylene

Cal Memory #3.....Benzene

Cal Memory #4.....Styrene

Cal Memory #5.....Toluene

Cal Memory #6.....Vinyl Chloride

Cal Memory #7.....Custom?

Memory #0 functions differently than the other 7 memories. For Memory #0, isobutylene is always the calibration gas. When the gas is changed in Memory #0 to one of 100 other preprogrammed chemicals or to a user-defined custom gas, a correction factor is applied to all the readings. During calibration, the unit requests isobutylene gas and displays the isobutylene concentration immediately following calibration, but when the unit is returned to the normal reading mode, it displays the selected gas and applies the correction factor.

The other 7 cal memories require the same calibration gas as the measurement gas. These memories may also be modified to a preprogrammed chemical or to a user-defined custom gas. In the gas library, only the gases that can be detected by the installed UV lamp will actually be displayed. Note that although the correction factor for the new gas will be displayed and can be modified, this factor is not applied when Memories #1-7 are

used. Therefore the factor will not affect the readings in these memories.

Once each of the memories has been calibrated, the user can switch between the calibrated gases by changing the cal memory without the need to recalibrate. Or the user can switch the measurement gas in Memory #0 and the appropriate correction factor will automatically be applied without the need to recalibrate. If the gas is changed in Memories #1-7, it is necessary to recalibrate.

To change a default gas from the list above to a library or custom gas, first go to Select Cal Memory (Section 4.4.3) and then proceed to Modify Cal Memory (Section 4.4.5) to enter the desired gas. If the desired compound does not appear in the preprogrammed library, the user can use the Custom_VOC entry in the library, or the name and correction factor of any of the existing compounds can be changed as described in Section 4.4.5. A list of some 300 correction factors is given in Technical Note 106, available at the website www.raesystems.com.

4.4.1 Fresh Air Calibration

This procedure determines the zero point of the sensor calibration curve. To perform a fresh air calibration, use the calibration adapter to connect the MiniRAE 2000 to a "fresh" air source such as from a cylinder or Tedlar bag (option accessory). The "fresh" air is clean dry air without any organic impurities. If such an air cylinder is not available, any clean ambient air without detectable contaminant or a charcoal filter can be used.

- 1. The first sub-menu shows: "Fresh air Cal?"
- 2. Make sure that the MiniRAE 2000 is connected to one of the "fresh" air sources described above.
- 3. Press the [Y/+] key, the display shows "zero in progress" followed by "wait.." and a countdown timer.

After about 15 seconds pause, the display will show the message "update data...zeroed... reading = X.X ppm..." Press any key or wait about 20 seconds, the monitor will return back to "Fresh air Calibration?" submenu.

4.4.2 Span Calibration

This procedure determines the second point of the sensor calibration curve for the sensor. A cylinder of standard reference gas (span gas) fitted with a 500 cc/min. flow-limiting regulator or a flow-matching regulator is the simplest way to perform this procedure. Choose the 500 cc/min. regulator only if the flow rate matches or slightly exceeds the flow rate of the instrument pump. Alternatively, the span gas can first be filled into a Tedlar Bag, or delivered through a demand-flow regulator. Connect the calibration adapter to the inlet port of the MiniRAE 2000 Monitor, and connect the tubing to the regulator or Tedlar bag.

Another alternative is to use a regulator with >500 cc/min flow but allow the excess flow to escape through a T or an open tube. In the latter method, the span gas flows out through an open tube slightly wider than the probe, and the probe is inserted into the calibration tube.

Before executing a span calibration, make sure the span value has been set correctly (see next sub-menu).

- 1. Make sure the monitor is connected to one of the span gas sources described above.
- 2. Press the [Y/+] key at the "Span Cal?" to start the calibration. The display shows the gas name and the span value of the corresponding gas.
- 3. The display shows "Apply gas now!" Turn on the valve of the span gas supply.

- 4. Display shows "wait.... 30" with a count down timer showing the number of remaining seconds while the monitor performs the calibration.
- 5. To abort the calibration, press any key during the count down. The display shows "Aborted!" and return to "Span Cal?" sub-menu.
- 6. When the count down timer reaches 0, the display shows the calibrated value.

Note: The reading should be very close to the span gas value.

- 7. During calibration, the monitor waits for an increased signal before starting the countdown timer. If a minimal response is not obtained after 35 seconds, the monitor displays "No Gas!" Check the span gas valve is on and for lamp or sensor failure before trying again.
- 8. The calibration can be started manually by pressing any key while the "Apply gas now!" is displayed.
- 9. After a span calibration is completed, the display will show the message "Update Data Span Cal Done! Turn Off Gas."
- 10. Turn off the flow of gas. Disconnect the calibration adapter or Tedlar bag from the MiniRAE 2000 Monitor.
- 11. Press any key and it returns back to "Span Gas Cal?"

4.4.3 Select Cal Memory

This function allows the user to select one of eight different memories for gas calibration and measurement. For Memories #1-7, the calibration and measurement gas is the same and no correction factor is applied. For Memory #0, the calibration gas is always isobutylene and the measurement gas may be different, in which case the correction factor for that gas is automatically applied. The default gas selections are listed in Section 4.4

- 1. "Select Cal Memory?" is the third sub-menu item in the Calibration sub-menu. Pressing the [Y/+] key, the display will show "Gas =" gas name followed by "Mem # x?"
- 2. Press [N/-] to scroll through all the memory numbers and the gas selections respectively. Press [Y/+] to accept the displayed Cal Memory number.
- 3. After the [Y/+] key is pressed, the display shows "Save?" Press [Y/+] key to save and proceed. Press [N/-] to discard the entry and advance to the next sub-menu.
- 4. If the gas in a newly selected Cal Memory number is not calibrated, the display shows "CF= x.xx". A correction factor with the value "x.xx" will be applied.
- 5. If the gas of a newly selected cal memory number has been calibrated previously, the display shows "Last calibrated xx/xx/xx".

4.4.4 Change Span Value

This function allows the user to change the span values of the calibration gases.

- 1. "Change Span Value?" is the fourth sub-menu item in the Calibration sub-menu
- 2. Press [Y/+], display shows the gas name and the span value. A cursor will blink at the first digit of the Span value. To modify the span gas value, go to Step 3. Otherwise, press and hold the [MODE] key for 1 second to accept the previously stored span gas value and move to the next submenu.
- 3. Starting from the left-most digit of the span gas value, use the [Y/+] or [N/-] key to change the digit value and press [MODE] key momentarily to advance to next digit. Repeat this process until all digits are entered. Press and hold the [MODE] for 1 second to exit.
- 4. The display shows "Save?" To accept the new value, press the [Y/+] key. Press the [N/-] key or the [MODE] key to discard the change and move to the next sub-menu.

4.4.5 Modify Cal Memory

If the current cal memory number selected is not memory 0, users will be prompted whether to modify the settings of the selected cal memory. Press [Y/+] to modify the cal memory and [N/-] to go to the next sub-menu.

Once [Y/+] is pressed the LCD display will show the current memory number, current Gas selected and prompt user for acceptance of current gas selected.

- 1. Press [N/-] to modify the gas selection if desired. Or press [Y/+] key to skip the change of gas selection, and proceed to the next sub-menu.
- 2. After pressing [N/-], display shows "Copy gas from library?" Press [Y/+] to accept or [N/-] for the next submenu, "Enter Custom gas?"
- 3. In the "Copy gas from library" submenu, use [Y/+] and [N/-] keys to scroll through the selections in the library. Press [MODE] key momentarily to select the gas. The display shows "Save?" Press [Y/+] to save or [N/-] to discard the changes and proceed to next sub-menu.
- 4. In the Custom gas sub-menu, the user can enter the gas name. Press the [Y/+] or [N/-] key to cycle through all 26 letters and 10 numerals. Press the [MODE] key momentarily to advance to the next digit. The flashing digit will move to the next digit to the right. Repeat this process until all digits (up to 8 digits) of the custom gas name is entered.

Press and hold the **[MODE]** key for 1 second to exit the name entry mode. The display will show "Save?" Press **[Y/+]** to save the entry, or **[N/-]** to discard the changes.

4.4.6 Change Correction Factor

This function allows the user to change the Correction Factor of the standard calibration gas (only for Cal Memory #0).

- 1. "Change Correction Factor?" is the sixth sub-menu in the Calibration sub-menu.
- 2. Press [Y/+] key. Display shows the gas name, then the correction factor.

A cursor blinks at the left-most digit of the correction factor. If user wants to modify the correction factor, go to Step 3. Otherwise, press and hold the [MODE] key for 1 second to accept the previously stored correction factor value and return to the first sub-menu of the calibrate/select gas menu.

- 3. Starting from the left-most digit of the correction factor, use [Y/+] or [N/-] key to change the digit value and press [MODE] key momentarily to advance to the next digit, the cursor will move to the next digit to the right. Repeat this process until all digits are entered. Press and hold the [MODE] for 1 second to exit.
- 4. The display shows "Save?" To confirm the new value, press [Y/+] to accept the change. Press [N/-] or [MODE] to discard the change and return to the first sub-menu, Calibrate and Select Gas.

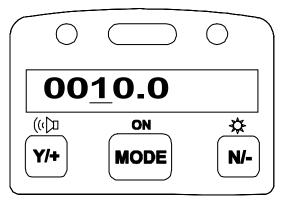
4.5 Change Alarm Limits

In this menu, the user can change the high and low alarm limits, the STEL limit and the TWA limit (see Table 4.5 below). Press the [Y/+] key and the display shows the current gas selected followed by the first sub-menu item below.

Table 4.5

Alarm Limit Sub-Menu

Change High Alarm limit?


Change Low Alarm limit?

Change STEL limit?

Change TWA limit?

1. Scroll through the Alarm Limit sub-menu using the [N/-] key until the display shows the desired limit to be changed, e.g.,"High limit?", "STEL limit?", etc.

2. Press the [Y/+] key to select the desired limit and the display shows a flashing cursor on the left-most digit of the previously stored alarm limit.

- 3. To modify this limit value, use the [Y/+] or [N/-] key to change the digit value and press the [MODE] key momentarily to advance to the next digit. The flashing digit will move to the next digit to its right. Repeat this process until the new limit value is entered. Press and hold the [MODE] key for 1 second to exit data entry mode.
- 4. If there is any change to the existing value, the display shows "Save?" Press [Y/+] to accept the new value and move to the next sub-menu. Press [N/-] to discard the changes and move to the next sub-menu.

4.5.1 Change Low Alarm Limit

The second sub-menu item in the Alarm Limit sub-menu allows the user to change the Low Alarm limit. The LCD displays "Low limit?" To change Low Alarm limit, press [Y/+] key, or Press [N/-] key advance to next sub-menu in Table 4.5.

- 1. Press [Y/+] and the display will show a flashing cursor on the left-most digit of the previously stored Low alarm limit.
- 2. To modify this limit value, use the [Y/+] or [N/-] key to change the digit value and press the [MODE] key momentarily to advance to the next digit. The flashing digit will move to the next digit to its right. Repeat this process until the new limit values is entered. Press and hold the [MODE] key for 1 second to exit data entry mode.
- 3. If there is any change to the existing value, the display shows "Save?" Press [Y/+] to accept the new value and move to the next sub-menu. Press [N/-] to discard the changes and move to the next sub-menu.

4.5.2 Change STEL Limit

This sub-menu item allows the user to change the STEL limit. The display shows "STEL limit?"

- 1. Press the [Y/+] key and the display will show a flashing cursor on the left-most digit of the previously stored STEL limit.
- 2. To modify this limit value, use the [Y/+] or [N/-] key to change the digit value and press the [MODE] key momentarily to advance to the next digit. The flashing digit will move on to next digit to its right. Repeat this process until the new limit values is entered. Press and hold the [MODE] key for 1 second to exit data entry mode.
- 3. If there is any change to the existing value, the display shows "Save?" Press [Y/+] to accept the new value and move to the next sub-menu. Press [N/-] to discard the changes and move to the next sub-menu.

4.5.3 Change TWA Limit

This sub-menu item allows the user to change the TWA limit. The LCD displays "TWA limit?"

- 1. Press [Y/+] and the display will show a flashing cursor on the left-most digit of the previously stored TWA limit.
- 2. To modify this limit value, use the [Y/+] or [N/-] key to change the digit value and press the [MODE] key momentarily to advance to the next digit. The flashing digit will move on to next digit to its right. Repeat this process until the new limit values is entered. Press and hold the [MODE] key for 1 second to exit data entry mode.
- 3. If there is any change to the existing value, the display shows "Save?" Press [Y/+] to accept the new value and move to the next sub-menu. Press [N/-] to discard the changes and move to the next sub-menu.

4.6 Change Datalog

The MiniRAE 2000 monitor calculates and stores the concentration and ID of each sample taken. In the datalog submenu, a user can perform the tasks and functions shown below.

Datalog Sub-Menu

Reset Peak/Minimum?

Clear Data?

Change Data Period?

Change Average Type?

4.6.1 Reset Peak

This function will reset the peak and minimum stored in the data memory. Note: this function will not clear the STEL or TWA data.

- 1. "Reset Peak?" is the first sub-menu item in the Datalog sub-menu (Table 4.6).
- 2. Press the [Y/+] key to reset the Peak/Minimum Values. The display shows "Are You Sure?"
- 3. Pressing the [Y/+] key again will reset the values. The display shows "Peak/Minimum Cleared" and moves to the next submenu.
- 4. Press the [N/-] or [MODE] key to exit without resetting the values and move to the next sub-menu.

4.6.2 Clear Data

This function will erase all data stored in the non-volatile datalog memory. Note: This function does not change STEL, TWA, Peak, Minimum and run time values, which are stored in the regular data memory.

- 1. "Clear Data?" is the third sub-menu item in the Datalog sub-menu.
- 2. Press the [Y/+] key to clear the datalog memory. The display shows "Are you sure?"
- 3. Press the [Y/+] key again to confirm erasure of all the datalog memory.
- 4. Press the [N/-] or [MODE] key to exit without clearing the datalog memory and move to the next datalog sub-menu.

4.6.3 Change Data Period

The datalog period can be programmed from 1 to 3,600 seconds (1 hour).

- 1. "Change Data Period?" is the fifth sub-menu item in the Datalog sub-menu.
- 2. Press the [Y/+] key and the display shows "Datalog Period = XXXX" with the left-most digit flashing, where "XXXX" is the previously stored data log period.
- 4. To modify this period, starting from the left-most digit, use the [Y/+] or [N/-] key to change the digit value and press the [MODE] key momentarily to advance to the next digit. The flashing digit will move to the next digit to the right. Repeat this process until all 4 digits of the new period are entered. Press and hold the [MODE] key for 1 second to exit data entry mode.
- 5. If there is any change to the existing value, the display will show "Save?" Press [Y/+] to accept the new value or [N/-] to discard the changes and move to the next sub-menu.

4.6.4 Change Average Type

The user can select either an 8-hour Time Weighted Average (TWA) or a running Average. The running average is simply the average of all instantaneous (1-second) readings since the measurement was started. This average may increase or decrease with time depending on the readings. The TWA is a cumulative value used to estimate the fraction of the 8-hour limit to which the user has been exposed since the start of the measurement. This value can only increase or remain constant, never decrease. Refer to Technical Note 119 for more information on how TWA is calculated.

- 1. "Change Average Type?" is the sixth sub-menu in the Datalog sub-menu.
- 2. Press the [Y/+] key to enter the function.
- 3. The display will show "Running Average?" or "Time Weighted Average?" depending on the current average type.
- 4. Press [N/-] key to toggle between the average types. Press [Y/+] key to select the displayed average type.
- 5. If there is any change to the existing setting, the display shows "Save?" Press [Y/+] to save the change. Press [N/-] or [MODE] to discard the change and return to the first submenu.

4.7 Change Monitor Setup

Several monitor specific variables can be changed in this menu. The following is a list of configuration data that can be modified by the user.

Monitor Setup Sub-Menu	Diagnostic Mode
Change Operation Mode?	"
Change Site ID?	Change Unit ID?
Change User ID?	Change Host ID?
Change Alarm Mode?	"
Change User Mode?	"
Change Date?	"
Change Time?	"
Change Lamp?	"
Change Pump Duty Cycle?	"
Change Unit?	"
Change Dilution Ratio?	"
Change Output?	"
Change DAC Range?	"
Set Temperature Unit?	"

4.7.1 Change Operation Mode

MiniRAE 2000 supports two operation modes: Survey and Hygiene mode.

Survey mode: Manual start/stop of measurements and display of certain exposure values.

Hygiene mode: Automatic measurements, running and datalogging continuously and calculates additional exposure values.

- 1. "Change Op Mode?" is the first sub-menu item in the Monitor Setup menu (Table 4.7).
- 2. Press the [Y/+] key and the display shows the current user mode: "Op Mode = *current mode*?"
- 3. Press the [Y/+] key to accept the currently displayed operation (Op) mode. Press [N/-] to toggle to the other operation mode. Press [MODE] to exit this sub-menu and move to the next monitor setup sub-menu.
- 4. When changing Op mode from Hygiene to Survey, the display shows the additional message "Warning! Exit Hygiene?" to prevent accidental exit from Hygiene mode. Press the [Y/+] key to acknowledge.
- 5. If there is any change to the existing setting, the display will show "Save?" Press the [Y/+] key to accept or the [N/-] key to discard and move to the next sub-menu.

Note: If a new Op Mode is saved, the display shows "Op Mode changed!!" when exiting the programming mode.

4.7.2 Change Site ID

The user can enter an 8-digit alphanumeric site ID in the programming mode. This site ID will be included in the datalog report.

- 1. "Change Site ID?" is the second sub-menu item in the Monitor Setup menu (Table 4.7).
- 2. Press the [Y/+] key and the display shows the current site ID: "Site ID = xxxxxxx" with the left most digit flashing.
- 3. Press the [Y/+] or [N/-] key to cycle through all 26 letters and 10 numerals. Press [MODE] momentarily to advance to the next digit. The flashing digit will move to the next digit to the right. Repeat this process until all 8 digits of the new site ID are entered.
- 4. Press and hold the [MODE] key for 1 second to exit the data entry mode.
- 5. If there is any change to the existing site ID, the display shows "Save?" Press the [Y/+] key to accept the new site ID. Press the [N/-] key to discard the change and move to the next sub-menu.

4.7.3 Change User ID

The user can enter an 8-digit alphanumeric user ID in the programming mode. This user ID will be included in the datalog report.

- 1. "Change User ID?" is the third sub-menu item the Monitor Setup menu.
- 2. Press the [Y/+] key and the display shows the current user ID: "User ID = xxxxxxxx" with the left most digit flashing.
- 3. Press the [Y/+] or [N/-] key to cycle through all 26 letters and 10 numerals. Press [MODE] momentarily to advance to the next digit. The flashing digit will move to the next digit to the right. Repeat this process until all 8 digits of the new user ID are entered.
- 4. Press and hold the [MODE] key for 1 second to exit the data entry mode.
- 5. If there is any change to the existing user ID, the display shows "Save?" Press the [Y/+] key to accept the new user ID. Or press the [N/-] key to discard the changes and move to the next sub-menu.

4.7.4 Change Alarm Mode?

There are two different alarm modes: **Latched** and **Automatic Reset** (Auto Reset) in the MiniRAE 2000 that can be selected from the programming menu.

- 1. "Change Alarm Mode?" is the fourth sub-menu item in the Monitor Setup menu.
- 2. Press the [Y/+] key; the display shows the current alarm mode.
- 3. Press the [Y/+] key to accept the currently displayed alarm mode. Press [N/-] key to toggle to the other alarm mode. Press [MODE] to exit this sub-menu and move to the next monitor setup sub-menu.
- 4. If there is any change to the existing setting, the display will show "Save?" Press [Y/+] to save the change. Press [N/-] or [MODE] to discard the change and move to the next submenu.

4.7.5 Change User Mode

There are two different user modes: **Display** and **Program** that can be selected from the programming menu.

- 1. "Change User Mode?" is the fifth sub-menu item in the Monitor Setup menu (Table 4.7).
- 2. Press the [Y/+] key; the display shows the current user mode selected.
- 3. Press the [Y/+] key to accept the currently displayed user mode. Press [N/-] key to toggle to the alternate user modes. Press [MODE] to exit this sub-menu and move to the next monitor setup sub-menu.
- 4. If there is any change to the existing selection, the display shows messages "Program change" and "Are you sure?" Press [Y/+] to confirm the change or press [N/-] or [MODE] to discard the changes and move to the next submenu.

CAUTION: If the user mode is changed to **Display** mode, the user can no longer enter the programming mode. Therefore, the user can not change the user mode back to **Program** mode in normal mode.

To restore the user mode back to **Program** mode, turn the unit off and back on in Diagnostic Mode. Next enter Program mode by holding the **[MODE]** and **[N/-]** keys for three seconds. Enter the password at the prompt (the default is 0000). Once program mode is entered, go to the "Change Monitor Setup" / "Change User Mode" and change the mode back to **Program.**

An alternative way to change Display mode back to Program mode is through the PC and the ProRAE-Suite software.

4.7.6 Change Date

The MiniRAE 2000 monitor is equipped with a real time clock (RTC). The user can enter the correct date and time (see 4.7.7) for the real time clock.

- 1. "Change Date?" is the sixth sub-menu item in the Monitor Setup menu.
- 2. Press [Y/+] and the display shows the current date "mm / dd / yy" with the left most digit of the date flashing.
- 5. To modify this value, use the [Y/+] or [N/-] key to change the digit value and press the [MODE] key momentarily to advance to the next digit. The flashing digit will move on to next digit to its right. Repeat this process until the new date and time values are entered. Press and hold the [MODE] key for 1 second to exit data entry mode.
- 4. If there is any change to the existing value, the display shows "Save?" Press [Y/+] to confirm the new value or press [N/-] or [MODE] to discard the changes and move to the next sub-menu.

4.7.7 Change Time

To change the time in the RTC of the MiniRAE 2000:

- 1. "Change Time?" is the seventh sub-menu item in the Monitor Setup menu.
- 2. Press [Y/+] and the display shows the current time in the 24-hour format "hh: mm" with the left most digit of the time flashing.
- 3. To modify this value, use the [Y/+] or [N/-] key to change the digit value and press the [MODE] key momentarily to advance to the next digit. The flashing digit will move on to next digit to its right. Repeat this process until the new date and time values are entered. Press and hold the [MODE] key for 1 second to exit data entry mode.
- 4. If there is any change to the existing value, the display shows "Save?" Press [Y/+] to confirm the new value or press [N/-] or [MODE] to discard the changes and move to the next sub-menu.

4.7.8 Change Lamp

There are three UV lamps with different photon energies available for the PID sensor: 9.8 eV, 10.6 eV and 11.7 eV. The user can select any one of the lamps from the programming mode.

- 1. "Change Lamp Type?" is the eighth sub-menu item in the Monitor Setup menu (Table 4.7).
- 2. Press the [Y/+] key; the display shows the current PID lamp selection.
- 3. Press the [Y/+] key to accept the currently displayed lamp. Press [N/-] key to scroll through the sub-menu for other lamp selections. Press [MODE] to exit this sub-menu and return to the next sub-menu in Table 4.7.
- 4. If there is any change to the existing selection, the display will show "Save?" Press [Y/+] to save the new selection or press [N/-] or [MODE] to discard the change and return to the next sub-menu in Table 4.7.

4.7.9 Change Unit

User can change the display and datalog unit from parts per million (ppm) to milli-gram per cubic meter (mg/m³).

- 1. "Change Unit?" is the ninth sub-menu item in the Monitor Setup sub-menu.
- 2. Press the [Y/+] key, the display should show the current unit "Display Unit = ppm?" or "Display Unit = mg?"
- 3. Press [Y/+] key to accept the currently displayed unit. Press [N/-] key to toggle to the other unit. Press [MODE] key to exit this sub-menu.
- 4. If there is any change to the existing selection, press [Y/+] to confirm the new selection or press [N/-] or [MODE] to discard the changes and move to the next sub-menu.

Caution:

- 1. The correction factor in the gas library is calculated based on "ppm" unit. If "mg" unit is selected, the built-in correction factor library is not valid.
- 2. No automatic conversion between "ppm" and "mg/m³" reading is performed by the monitor.
- 3. When the unit name is changed from "ppm" to "mg", the unit must be recalibrated with the span gas concentration entered in mg/m³. The converse rule applies when the unit is changed from "mg" to "ppm".

4.7.10 Change Dilution Ratio

If a dilution system is used upstream of the MiniRAE 2000 inlet port, the user can enter the dilution ratio (from 1 to 10) to compensate the readings. The unit will then display the actual concentration of the gas before dilution. The dilution ratio should be 1 in normal operation where no dilution gas is applied to the sample gas. Dilution improves accuracy and linearity when the concentrations are above a few thousand ppm.

- 1. "Change Dilution Ratio?" is the tenth sub-menu item in the Monitor Setup menu.
- 2. Press the [Y/+] key; the display shows the current dilution ratio: "Dilution Ratio = xx" with the left most digit flashing.
- 3. Press the [Y/+] or [N/-] key to increase or decrease the value of the digit. Press [MODE] momentarily to advance to the next digit. The flashing digit will move to the next digit to the right. Repeat this process until both digits of the new dilution ratio are entered.
- 4. Press and hold the [MODE] key for 1 second to exit the data entry mode and move to the next sub-menu.
- 5. If there is any change to the existing dilution ratio, the display shows "Save?" Press [Y/+] to confirm the new value or press [N/-] or [MODE] to discard the changes and move to the next sub-menu.

4.7.11 Change Output?

There are two different external output options: DAC (Analog output) and Alarm in the MiniRAE 2000 that can be selected from the programming menu. The alarm output can be used to connect to the optional vibration alarm (vibrator) only. The analog output, which is proportional to the gas concentration, can be connected a chart recorder or can be queried by a computer to download data in real time (see Technical Note 141).

- 1. "Change External Output?" is the eleventh sub-menu item in the Monitor Setup menu.
- 2. Press the [Y/+] key and the display shows the current output option selection: "Output = DAC?"
- 3. Press the [Y/+] key to accept the currently displayed output option. Press [N/-] to change to the other external option: "Output = Alarm?" Press [MODE] to exit this sub-menu and move to the next monitor setup sub-menu.
- 4. If there is any change to the existing selection the display will show "Save?" Then, press [Y/+] to save the change, press [N/-] to go back to Step 2, or press [MODE] to exit this sub-menu and move to the next monitor setup submenu.

4.7.12 Change DAC Range?

There are four different DAC (Digital-to-Analog Conversion) range values available in the **MiniRAE 2000: 20, 200, 2000** and **10K ppm**. The maximum 2.5V DC analog signal output from the unit will represent the range value chosen. (See for analog signal output connection.)

- 1. "Change DAC Range?" is the twelfth sub-menu item in the Monitor Setup menu.
- 2. Press the [Y/+] key, the display shows the current DAC Range value: "DAC Range = 2000 ppm?"
- 3. Press the [Y/+] key to accept the currently displayed value. Press [N/-] to scroll through the sub-menu for other range values. Press [MODE] to exit this sub-menu and return to the first sub-menu in Table 4.7.
- 4. If there is any change to the existing selection, press the [Y/+] key and the display will show "Save?" Press the [Y/+] key to save the change or press the [N/-] key to discard and return to the first sub-menu in Table 4.7.

4.7.13 Set Temperature Unit?

The temperature display can be switched between Fahrenheit and Celsius units.

- 1. "Set Temperature Unit?" is the thirteenth sub-menu item in the Monitor Setup menu.
- 2. Press the **[Y/+]** key, and the display shows the current setting: "Temperature Unit = Fahrenheit?"
- 3. Press the [Y/+] key to accept the currently displayed value. Press [N/-] to select the sub-menu "Temperature Unit = Celsius?" Press [MODE] to exit this sub-menu and return to the first sub-menu in Table 4.7.
- 4. If there is any change to the existing selection, press the [Y/+] key and the display will show "Save?" Press the [Y/+] key to save the change and return to the first submenu in Table 4.7 or press the [N/-] key to discard and return to Step 3..

4.8 Exit Programming Mode

- 1. To exit programming mode from the first tier menu level, press the [MODE] key once.
- 2. To exit programming mode from 2nd tier sub-menu, press the [MODE] key twice.
- 3. To return to programming mode, press and hold down both the [MODE] and [N/-] keys for 3 seconds.

5. THEORY OF OPERATION

The MiniRAE 2000 monitor uses a newly developed electrodeless discharge UV lamp as the high-energy photon source for the PID. As organic vapors pass by the lamp, they are photo-ionized and the ejected electrons are detected as a current. The PID sensor with a standard 10.6 eV lamp detects a broad range of organic vapors. A lamp with high photon energy (e.g. 11.7 eV) will measure the more kinds of compounds, whereas low photon energies (e.g. 9.8 eV) are selective for easily ionizable compounds such as aromatics. In principle, any compound with an ionization energy lower than that of the lamp photons can be measured.

The PID sensor for the MiniRAE 2000 monitor is constructed as a small cavity in front of the UV lamp. A diaphragm pump draws the gas sample into the sensor and then pumps it out through the side of the instrument.

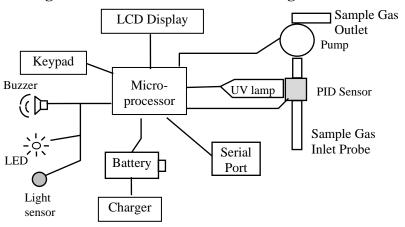


Figure 5-1 MiniRAE 2000 Block Diagram

A single chip microcomputer is used to control the operation of the alarm buzzer, LED, pump and light sensor. It measures the sensor readings and calculates the gas concentrations based on calibration to known standard gases. The data are stored in non-volatile memory so that they can be sent to a PC for record keeping. RS-232 transceivers provide a serial interface between the monitor and the serial port of a PC. An LCD display consisting of a single row of eight alpha/numeric characters is used to display the readings. The user interacts with the monitor through three keys on the front panel keypad.

A rechargeable NiMH, NiCd battery, or an alkaline battery pack powers the monitor.

6. MAINTENANCE

The major maintenance items of the MiniRAE 2000 are:

- Battery pack
- Sensor module
- PID lamp
- Sampling pump
- Inlet connectors and filters

Note: Maintenance should be performed by qualified personnel only.

NOTE: The printed circuit board of the monitor is connected to the battery pack even if the power is turned off. Therefore, it is very important to disconnect the battery pack before servicing or replacing any components inside the monitor. Severe damage to the printed circuit board or battery may occur if the battery pack is not disconnected before servicing the unit.

6.1 Battery Charging and Replacement

When the display shows a flashing message "Bat", the battery requires recharging (see Section 3.1 for Battery charging). It is recommended to recharge the MiniRAE 2000 monitor upon returning from fieldwork. A fully charged battery runs a MiniRAE 2000 monitor for 10 hours continuously. The charging time is less than 10 hours for a fully discharged battery. The built-in charging circuit is controlled by the microcontroller to prevent over-charging. The battery may be replaced in the field (in area known to be non-hazardous) if required.

WARNING

To reduce the risk of ignition of hazardous atmospheres, recharge battery only in area known to be non-hazardous. Remove and replace battery only in area known to be non-hazardous.

Replacing Battery Pack

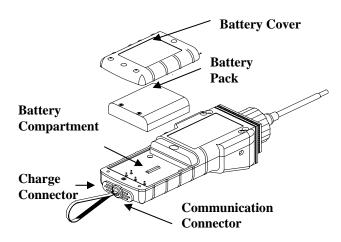


Figure 6-1 Battery Replacement

1.

Turn off the power of the MiniRAE 2000.

- 2. Unscrew the two battery compartment screws, located on the bottom of the monitor, and remove the cover.
- 3. Remove the battery pack from the battery compartment.
- 4. Replace a fully charged spare battery pack inside the battery compartment. Make sure the battery pack is oriented properly inside the compartment
- 5. Close the battery cover and tighten the two screws.

Replacing Alkaline Battery Adapter

- 1. Insert four fresh AA size alkaline batteries into the alkaline battery holder. Make sure that the polarity of the batteries is correct.
- 2. Follow the same procedure as described above to replace the battery holder.

Note: The internal charging circuit is designed to prevent charging to alkaline batteries.

6.2 PID Sensor & Lamp Cleaning/Replacement

The sensor module is made of several components and is attached to the lamp-housing unit as shown in Figure 7-2.

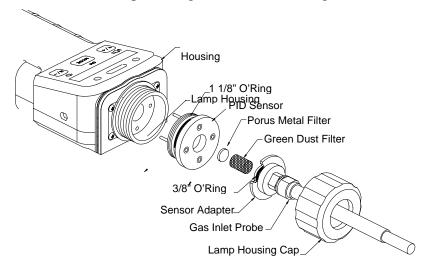


Figure 7-2 Sensor Components

Note: Normally the cleaning procedure is not needed. Clean the PID sensor module, the lamp and the lamp housing only when one of the following happened:

- 1. The reading is inaccurate even after calibration.
- 2. The reading is very sensitive to air moisture.
- 3. A chemical liquid has been sucked into the unit and damaged the unit.

Use of the water trap filter will help prevent contamination and accidentally drawing liquid into the sensor.

To access the sensor components and lamp, gently unscrew the lamp-housing cap, remove the sensor adapter with the gas inlet probe and the metal filter all together. Then hold the PID sensor and pull straight out to avoid bending the electrical pins on the sensor (see Figure 7-2). A slight, gentle rocking motion helps release the sensor.

To clean the PID sensor:

Place the entire PID sensor module into GC grade methanol. It is highly recommended that an ultrasound bath to be used to clean the sensor for at least 15 minutes. Then dry the sensor thoroughly. Never touch the electrodes of the sensor by hand.

Also use a methanol-soaked cotton swab to wipe off the lamp housing where it contacts the sensor when the sensor is installed.

Turn over the sensor so that the pins point up and the sensor cavity is visible. Examine the sensor electrodes for any corrosion, damage, or bending out of alignment. The metal sensor electrode "fingers" should be flat and straight. If necessary, carefully bend the sensor fingers to ensure that they do not touch the Teflon portions and that they are parallel to each other. Make sure that the nuts on the sensor pins are snug but not overtight. If the sensor is corroded or otherwise damaged, it should be replaced.

To clean lamp housing or change the lamp:

To clean lamp housing or change the lamp:

If the lamp does not turn on, the monitor will display an error message to indicate replacement of the lamp may be required.

1. If the lamp is operational, clean the lamp window surface and the lamp housing by wiping it with GC grade methanol using a cotton swab using moderate pressure. After cleaning, hold the lamp up to the light at an angle to detect any remaining film. Repeat the process until the lamp window is clean. Never use water solutions to clean the lamp. Dry the lamp and the lamp housing thoroughly after cleaning.

CAUTION: Never touch the window surface with the fingers or anything else that may leave a film. Never use acetone or aqueous solutions.

- 2. If the lamp does not turn on, remove the lamp from the lamp housing. Place the lamp O-ring onto the new lamp. Insert the new lamp, avoiding contact with the flat window surface.
- 3. Reinstall the PID sensor module.
- 4. Tighten the Lamp Housing Cap.
- 5. If the lamp type has been changed, adjust the lamp type setting in the programming mode (Section 4.7.8).

6.3 Sampling Pump

When approaching the end of the specified lifetime of the pump, it will consume higher amount of energy and reduce its sample draw capability significantly. When this occurs, it is necessary to replace or rebuild the pump. When checking the pump flow, make sure that the inlet connector is tight and the inlet tubing is in good condition. Connect a flow meter to the gas inlet probe. The flow rate should be above 450 cc/min when there is no air leakage.

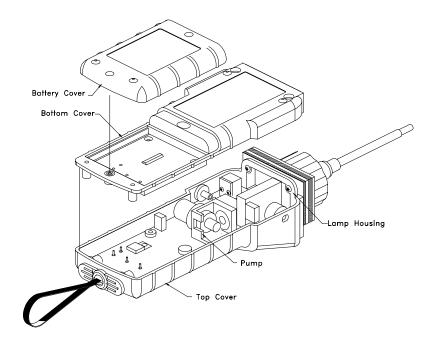


Figure 7-3 Sampling Pump

Pump Replacement

- 1. Turn off the MiniRAE 2000 power.
- 2. Open the battery cover, remove the battery pack, and carefully unscrew the six screws to open the bottom cover.
- 3. Unplug the pump from the PCB. Unscrew the two screws that hold the pump assembly to the PCB. Disconnect the Tygon tubing that connects the pump to the gas inlet port and gas outlet port.
- 4. Insert a new pump assembly. Connect the Tygon tubing to the gas inlet port. Plug the pump connector back into the PCB and screw down the pump assembly to the board.
- 5. Replace the bottom cover and tighten the six screws. Reconnect the battery pack. Replace the battery pack and its cover.

6.4 Turning on the UV Lamp

The UV lamp is made of a glass envelope and a UV window (salt crystal) on one end of the envelope. The inside of the lamp is filled with low pressure gases. To turn on the lamp, a high voltage electric field is applied from the outside of the glass envelope. The molecules inside the lamp are ionized and produce a glow discharge that generates the UV light. The MiniRAE 2000 has a built-in sensing mechanism to monitor the status of the UV lamp and display a "Lamp" error message if it is not on.

If the UV lamp has not been used for a long period of time (> 1 month) or is cold, it may become slightly harder to turn on. If such a condition occurs, the "Lamp" message will appear in the monitor display during the power on sequence. This phenomenon is more significant in 0.25" UV lamps used in ToxiRAE and MultiRAE Plus products, because of the relatively small lamp size. To solve this problem, simply turn on and off the monitor a few times and the lamp should turn on. After the UV lamp is turned on for the first time, it should be easier to turn on the UV lamp next time.

It is possible that the UV lamp is actually on when the lamp error message appears. This is because when the lamp becomes old, the internal threshold level to detect lamp failure may have shifted and cause a false alarm. To eliminate such possibility, simply check to see the UV lamp is actually on. This can be done easily by removing the sensor cap and observing the glow light of the UV lamp in a dark place. The user can also feed the monitor with calibration gas and observe if the sensor reading changes. If the reading changes significantly with the gas, the UV lamp is actually on.

A possible failure mechanism for the UV lamp is a leak developed along the seal of the glass envelope. When such condition occurs, the lamp will become very hard or impossible to turn on and will need to be replaced.

7. TROUBLESHOOTING

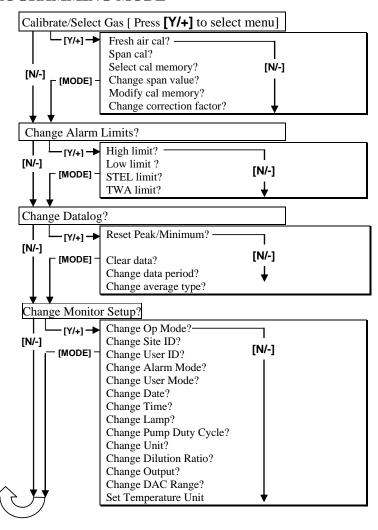
To aid the user in diagnosing the monitor, a special diagnostic mode can be used displays critical, low level parameters. Section 7.1 describes the operation of the diagnostic mode. Section 7.2 summarizes the frequently encountered problems and suggested solutions. By turning on the MiniRAE 2000 monitor in diagnostic mode and by using the troubleshooting table in Section 7.2, the user can usually correct the problem without having to return the monitor for repair.

WARNING

This function should be used by qualified personnel only! The diagnostic mode allows the user to set several low-level parameters that are very critical to the operation of the monitor. Extra care should be taken when setting these parameters. If the user is not familiar with the function of these parameters and sets them incorrectly, it may cause the monitor to shut down or malfunction.

7.1 Troubleshooting Table

Problem	Possible Reasons & Solutions					
Cannot turn on power	Reasons:	Discharged battery.				
after charging the battery		Defective battery.				
		Microcomputer hang-up.				
	Solutions:	Charge or replace battery.				
	Disconnect, then connect battery to reset					
	computer.					
No LCD back light	Reasons:	Trigger level too low, the				
		current mode is not user				
		mode, and the mode does not				
		support automatic turn on				
		back light.				
	Solutions:	Adjust trigger level.				
	Verify the back light can be turned on in user					
	mode. Call authorized service center.					
Lost password	Solutions:					
Lost password	Solutions: Call Technical Support at +1.408 .752 .0723 or +1.888 .723 .4800					
Reading abnormally	Reasons:	Dirty sensor module.				
High		Dirty water trap filter.				
		Excessive moisture and water				
		condensation.				
	Solutions:	Clean sensor module and				
	lamp housing.	Replace water				
	trap filter.	Replace water				
	-	Blow dry the sensor module.				
Buzzer	Reasons:	Bad buzzer.				
Inoperative						
•	Solutions:	Call authorized service				
	center.					


TROUBLESHOOTING

Inlet flow too low	Reasons:	Pump diaphragm damaged or has debris. Flow path leaks.	
	Solutions:	Check flow path for leaks; sensor module O-ring, tube connectors, Teflon tube compression fitting. Replace pump or diaphragm.	
"Lamp" message during operation	Reasons:	Lamp drive circuit. Weak or defective PID lamp, defective.	
	Solutions:	Turn the unit off and back on Replace UV lamp	
Full scale measurement in humid environment	Reasons:	Dirty or wet sensor.	
	Solutions:	Clean and dry sensor and lamp housing. Adjust sensor fingers to ensure not touching Teflon. Use water trap filter.	
Reading abnormally low	Reasons:	Incorrect calibration. Low sensitivity to the specific gas. Weak or dirty lamp. Air leakage.	
	Solutions:	Calibrate the monitor. Replace sensor. Clean or replace lamp. Check air leakage.	

APPENDIX A. QUICK REFERENCE GUIDE

Press [N/-] and [MODE], simultaneously, for 3 seconds, to enter Programming Mode. Press [MODE] to return to Survey Mode.

PROGRAMMING MODE

RAE Systems, Inc. Contact Information

Main Office: 3775 N. First St.

San Jose, CA 95134-1708

USA

Telephone: 408-952-8200

Fax: 408-952-8480

Instrument Sales: 877-723-2878

Email: RaeSales@raesystems.com

Website: www.raesystems.com

Technical Service: 888-723-4800

Tech@raesystems.com

Special Note

If the monitor needs to be serviced, contact either:

- 1. The RAE Systems distributor from whom the monitor was purchased; they will return the monitor on your behalf.
- 2. The RAE Systems Technical Service Department. Before returning the monitor for service or repair, obtain a Returned Material Authorization (RMA) number for proper tracking of your equipment. This number needs to be on all documentation and posted on the outside of the box in which the monitor is returned for service or upgrade. Packages without RMA Numbers will be refused at the factory.